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Operations Management can contribute greatly in understanding the various chal­

lenges currently faced by the healthcare sector worldwide including the U.S. In 

the three essays of this dissertation, I investigate three such challenges in diverse 

settings that require diverse methods of analysis.

In Chapter 1, I study the degree of concentration in the U.S. influenza vaccine 

market and its impact on the supply of vaccines. I show that interaction between 

yield uncertainty in the production process and firms’ strategic behavior can 

contribute to a high degree of concentration in an industry and a reduction in the 

industry output and the expected consumer surplus in equilibrium. I analyze the 

social trade-off between risk pooling (by diversification of supply) and economies 

of scale (by avoiding duplication of fixed costs). Finally, I conduct numerical 

analysis with realistic parameters to assess the impact of yield uncertainty on the 

U.S. influenza vaccine market.

C h ap ter 2 p resen ts a  prescriptive m odel for ration in g  trea tm en t for H IV +  

patients in resource-constrained regions such as Asia and Africa. I consider an 

individual clinic facing an uncertain supply of drugs resulting from inadequate
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supply management skills and a weak infrastructure. I model the clinic’s trade-off 

between improving access to treatment for new patients and providing uninter­

rupted treatment for current patients and derive its optimal treatment rationing 

policy using stochastic dynamic programming. I show that under certain con­

ditions the optimal policy coincides with the clinically preferred policy of pri­

oritizing previously enrolled patients. Numerical illustrations suggest that the 

performance of enrollment policies used in practice can be substantially subopti- 

mal.

In Chapter 3, I examine the relationship between organizational factors and 

quality of care in healthcare organizations. Using the data from a QIC conducted 

in Ryan White CARE Act funded clinics in the U.S. and an accompanying survey 

of clinicians, I find that organizations with more open culture, a higher focus on 

QI and multidisciplinary teams attempted higher number of interventions and at­

tempted interventions that were more cross-departmental in nature. Controlling 

for number of interventions and mean importance rating of interventions, imple­

mentation success was significantly associated with cross-departmental nature of 

interventions, fraction of interventions repeated and evaluated and presence of 

multidisciplinary teams. These results provide one potential explanation for the 

heterogeneity of implementation performance across healthcare organizations.
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C H A P T E R  1

C ournot com p etition  under y ield  uncertainty: 

T he case o f th e  U .S . influenza vaccine m arket

1.1 Introduction

The number of firms producing influenza vaccine for the U.S. has been declining 

steadily in the recent past. Two manufacturers, Sanofi Pasteur and Chiron, had 

been supplying all injectible vaccine since 2002, down from around five in the 

1990s and more than a dozen in the 1970s (Brown, 2004), and a third manufac­

turer (Glaxo-SmithKline) entered the U.S. market after the supply crisis in the

2004-2005 season. The non-injectible vaccine “Flumist” still only accounts for 2% 

of the total market. Articles in the popular press have blamed low market price, 

insufficient incentives and uncertain demand for this high degree of concentration 

and for the frequent vaccine shortages observed in the recent years (Forbes, 2004; 

Newsweek, 2004; Time, 2004). However, the existing evidence does not conclu­

sively support these claims. The price for influenza vaccine, unlike other vaccines, 

is not controlled by the government (Danzon et ah, 2004) and has increased from 

$2 to around $8 per dose in the past five years (Forbes, 2004). Also, the demand 

for influenza vaccine has been increasing steadily over the past decade as can 

be seen  from  th e  im m u n iza tion  rates (O ’M ara, 2003). O th er p ossib le reasons 

for exit of firms include mergers and acquisitions, plant closures resulting from

1
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inability to meet stringent regulatory standards and the market for vaccines be­

ing less profitable and much smaller compared to that for other pharmaceutical 

products. Danzon et al. (2005) argue that high country-specific regulatory cost 

is one of the key factors that would drive the long term equilibrium in the U.S. 

flu vaccine market to be characterized by one or two suppliers.

While these hypotheses might provide some explanation for the reduction 

in equilibrium number of firms over time, they do not address the question of 

whether this equilibrium is socially optimal. The American Antitrust Insititute 

has argued for more government involvement in order to build surge capacity, 

claiming that the free market process is not working satisfactorily (American 

Antitrust Institute, 2004). Economic theory, on the other hand, predicts that 

an oligopolistic market with unregulated but costly entry, such as the influenza 

vaccine market, will experience excess entry and oversupply compared to the 

social optimum.

One additional characteristic of the influenza vaccine market that further 

complicates the situation has received considerable attention recently in the trade 

literature but not yet in the academic literature: the yield uncertainty in the 

production process. The manufacturing process for influenza vaccine involves 

growing the virus in chicken eggs and later extracting, purifying, inactivating and 

packaging the vaccine (Gerdil, 2002). Due to the inherent uncertainty regarding 

the growth characteristics of the viral strains, the quantity of vaccine that can be 

obtained per chicken egg is uncertain (National Influenza Vaccine Summit, 2006; 

National Vaccine Advisory Committee, 2003; Powermed, 2005; Gerson Lehrman 

Group, 2005; GAO, 2001). The magnitude of the challenge posed by the yield 

uncertainty in influenza vaccine production is illustrated by quotes such as “...the 

yield of candidate strains sometimes is not as high as desired which results in fewer

2
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doses, or strains may take additional time to obtain optimal yields, resulting 

in delays in the availability of vaccine” (National Vaccine Advisory Committee, 

2003) and “The first [major factor contributing to the delay in vaccine availability 

in 2001] was that two manufacturers had unanticipated problems growing one of 

the two new influenza strains introduced into the vaccine for 2000-01” (GAO, 

2001).

We model the effect of yield uncertainty on the influenza vaccine market 

using using a two-stage game of oligopolistic competition. In the first stage, 

firms simultaneously decide whether to enter the market by incurring a fixed cost 

of entry. In the second stage, each entering firm selects the target production 

quantity. Then each firm’s yield is realized, actual quantity produced is brought 

to the market and price emerges according to the traditional model of quantity 

(Cournot) competition. We employ this model to answer the following specific 

questions:

(i) What is the impact of yield uncertainty on the quantity produced by each

firm, total output of the industry and total number of firms in the market 

under competitive equilibrium i.e., without any intervention by the social 

planner?

(ii) W hat is the impact of yield uncertainty on consumer welfare? How should

society trade off the risk pooling value of supply diversity against the effi­

ciency of having a single source?

(iii) W hat conditions result in less entry and lower production as compared to 

the social optimum?

(iv) Which regulatory interventions (supply-side or demand-side) are more ef­

fective and under what conditions?

3
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Although originally inspired by the influenza vaccine market, our model ap­

plies to several other industries with yield uncertainty including bio-pharmaceuticals, 

semiconductor manufacturing and agriculture. The rest of the chapter is struc­

tured as follows. Section 2.2 contains background information on the influenza 

vaccine market. Section 2.3 reviews related literature from operations manage­

ment (OM), economics and public health economics on yield uncertainty, compe­

tition and vaccinations respectively. In section 1.4, we present the basic model. 

Section 1.5 outlines the main results concerning the competitive equilibrium and 

socially optimal solutions while section 1.6 discusses numerical experiments with 

data pertinent to the U.S. influenza vaccine market. We provide some concluding 

remarks in section 2.9.

1.2 Background on influenza

The 20^ century has seen several influenza pandemics with the most severe in 

1918 causing close to 20 million deaths worldwide (WHO, 2002). Every year, 10- 

20% of the population gets influenza and nearly 36,000 people die of the resulting 

complications in the U.S. alone (Thomspon et al., 2003). Influenza and resulting 

complications are the sixth largest cause of death in the U.S. (Martone, 2002) 

with estimated annual costs of $11-18 billion (WHO, 2002). The most important 

reason for the persistence of influenza epidemics is the uncanny ability of the virus 

to continuously adapt itself every season, a phenomenon called the antigenic drift.

As a result, the composition of the vaccine has to be reviewed every year and 

can undergo frequent changes. The recommendations for vaccine composition 

are made every year by the WHO, in February for the northern hemisphere (for 

the flu season lasting from October to February of next year) and in August 

for the southern hemisphere (for the flu season lasting from May to August of

4
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next year). In addition, periodically, antigenic shift, in which genetic material 

of different strains of virus are recombined results in pandemics. (The current 

public focus on avian flu stems from the anticipation of a similar pandemic due 

to antigenic shift in the H5N1 strain.)

The challenges faced by the influenza vaccination system in the U.S. can 

be categorized broadly into demand-side challenges and supply-side challenges. 

Supply-side challenges in an influenza supply chain arise primarily from the com­

bination of long production lead-time, short immunization season and frequent 

changes in the vaccine composition. Production of influenza vaccine involves a 

long and complex biological process. The virus is grown in chicken eggs and later 

inactivated, purified and processed to manufacture the vaccine (Gerdil, 2002). 

The entire process takes six to eight months. Hence the manufacturers have to 

decide on the production quantity long before complete information about de­

mand is available. In addition, due to the continuous change in the constituent 

strains, unused vaccine from the previous season cannot be utilized this season. 

Williams (2005) and Yadav (2005) provide a detailed discussion of these dis­

tinguishing features of the influenza vaccine supply chain and suggest various 

improvement opportunities.

These challenges are compounded by the high yield uncertainty in the pro­

duction process, discussed earlier. Due to the long lead-time it is impossible to 

take any recourse later if faced with a particularly virulent strain of the virus or 

higher than expected demand or lower than expected yield (Danzon et al., 2005). 

The effects of uncertain yield on the supply of vaccine are clearly evident from the 

recent U.S. experience. In 2004-05, Chiron’s vaccine manufacturing plant in the 

U.K. was shut down by regulators due to bacterial contamination resulting in a 

reduction of total supply to the US market by about 50%, causing unprecedented

5
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shortages. The U.S. had also faced considerable shortages in the 2003-04 and 

2001-02 flu seasons due to an early onset of the epidemic and unexpected delays 

in the production process respectively.

On the demand side, immunization rates are lower than is socially optimal. 

Immunization of elderly citizens has been shown to be cost beneficial (Nicol et al., 

1998) and is recommended. However, in the U.S., as recently as 2002-03, the im­

munization rate was only around 60% among the elderly and even lower in other 

population groups (O’Mara et al., 2003). Most other countries have even lower 

immunization rates. Key factors cited by elderly people for low immunization 

rates include perceived good health, lack of advice from medical personnel and 

negative views on efficacy and safety of the vaccine (Evans and Watson, 2003). 

Other probable factors include lack of health insurance and high cost of vaccina­

tion. More generally, public health economists have long argued that individuals 

fail to internalize the positive externalities arising from vaccination, resulting in 

lower rates of immunization than is socially optimal. See Philipson (2003) for 

more details.

1.3 Literature Review

This work draws on and contributes to three distinct streams of literature. First, 

we extend the literature on the stochastically proportional yield model in oper­

ations management (OM) to a competitive setting. Second, we show how yield 

uncertainty affects the existing results in the oligopoly literature that discusses 

various models of competition with endogenous entry. Third, we build on the 

public health economics literature to which we also contribute by simultaneously 

studying supply and demand side factors traditionally analyzed in isolation.

6
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The model of yield uncertainty employed here has been widely used in the 

OM literature and is referred to as the stochastically proportional yield model. 

However, most of this OM literature considers the impact of yield uncertainty on 

either the production planning decisions of a single firm or procurement decisions 

of a single firm buying from multiple non-competitive suppliers with uncertain 

yields (Yano and Lee, 1995). Henig and Gerchak (1990), in a single firm model, 

show using an approximation that a higher yield variance results in lower optimal 

target production quantity. The first part of our analysis shows that this result 

extends to a competitive setting. Anupindi and Akella (1993) and Gerchak and 

Parlar (1990) discuss the value of diversification in the case of a given number 

of unreliable suppliers. Recently Federgruen and Yang (2005) and Dada et al. 

(2007) consider the problem of procurement from multiple suppliers with differing 

reliability and cost. In the second part of our analysis, the number of suppliers 

is endogenously determined through an entry game.

Carr et al. (2005) consider a competitive model of demand and capacity 

uncertainty. They show that a reduction in yield uncertainty can reduce the firm’s 

profit, if process improvement leads to an effective over-capacity in the industry 

resulting in stiffer price competition. One of our results is consistent with this, 

but in our model the increase in quantity produced is a rational decision rather 

than a direct outcome as in Carr et al. (2005). Moreover, Carr et al. (2005) do 

not consider entry decisions and their main focus is on studying the interaction 

between process improvement and competitive forces. In short, we contribute 

to the OM literature by studying the impact of yield uncertainty on strategic 

decisions of the firm such as entry and production quantity.

Other applications of OR/OM models to the influenza context have focused 

on control (Finkelstein et al., 1981) and management (Longini et al., 1977) of

7
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epidemics and on strain selection (Wu et al., 2005). Williams (2005) and Yadav 

(2005) provide a detailed review of the structure of the influenza vaccine supply 

chain and propose that an “information hub” and “government buy-back” scheme 

would improve its performance.

Vives (1999) provides a detailed account of the vast literature related to the 

Cournot (1838) model of oligopolistic competition. Part of this essay focuses 

on the question of firm entry in the context of oligopoly. Mankiw and Whinston 

(1986) compare the number of firms in the “free-entry equilibrium” with the num­

ber of firms that a social planner would choose. They show that under a decreas­

ing inverse demand function and convex cost structure entry of an additional firm 

reduces the output of incumbents. Ignoring the integer constraint on the number 

of firms, this effect is sufficient to ensure that there will always be excess entry 

relative to the social optimum. Von Weizsacker (1980) reaches similar conclusions 

using a linear inverse demand function and numerical examples. We show that in 

contrast to Mankiw and Whinston (1986), adding yield uncertainty leads to less 

entry than optimal in a homogeneous goods market with business stealing effect. 

Thus, we contribute to the literature on oligopoly by including yield uncertainty, 

so far not considered in the context of Cournot competition. Traditionally, the 

uncertainty studied in Cournot models has been related to demand or cost or that 

resulting from players’ private information (Leland, 1972; Klemperer and Meyer, 

1986). However, yield uncertainty is fundamentally different from demand or cost 

uncertainty as it relates to a decision variable (production quantity) rather than 

an exogenous parameter; this has some important consequences.

Our model of consumer demand for vaccines is closely related to Brito et al. 

(1991), where consumers differ in the cost of vaccination, and a consumer’s like­

lihood of contagion from the unvaccinated population depends on the number

8
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of unvaccinated individuals. This interaction between individually rational deci­

sions and epidemiological dynamics has recently received attention in the public 

health economics literature, reviewed by Philipson (2003).

1.4 M odel Formulation

1.4.1 M odeling the supply

We assume that the industry consists of n manufacturing firms denoted by 

i G {1,2, ...to} possessing identical manufacturing process. If qi is the pro­

duction quantity targeted by firm i (as reflected by the total number of chicken 

eggs chosen), then the actual quantity produced is given by qi = a^ , where 

ai is a random variable reflecting the random yield per egg for firm i. Since the 

yield uncertainty results in a random proportion of the target quantity being pro­

duced, this multiplicative model is also known as the stochastically proportional 

yield model. Yano and Lee (1995) mention that this model is appropriate when 

relatively large batch sizes are used, when the variation of the batch size from 

production run to production run tends to be small or when the yield losses might 

be relatively predictable for any particular set of conditions, but the conditions 

are not predictable. All these criteria are met in the case of influenza vaccine 

production. Since all firms have the same production technology, a* is identically 

distributed for all firms. In addition, we assume that the cq are independent 

(GAO, 2001). Let /i =  E[ai] and a 2 =  VarfaJ Vi We include two marginal 

costs: (i) Ci per unit target quantity and (ii) C2 per unit actually produced. In our 

context, the first cost is driven by the number of chicken eggs and the second cost 

corresponds to the cost of bottling and packaging the actual vaccine produced.

9
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1.4.2 M odeling the demand

We assume a linear inverse demand function given by p — a (e) — bq, where e is 

a random variable denoting the efficacy of the vaccine. The reservation price a 

depends on how effective the vaccine is against the circulating virus strain in the 

coming season and allows for the fact that the customers would be willing to pay 

more for a more effective vaccine. While selecting the target production quantity, 

the firm does not know what the actual efficacy will be but does know the un­

derlying distribution. We assume that e is independent of the yield uncertainty 

variable a ;, i.e., the efficacy of the viral strains selected for the vaccine is inde­

pendent of the production characteristics for those strains. In some seasons due 

to the antigenic drift the strains in the vaccine will usually be less effective, but 

that does not appear to be related to the production yield that will be obtained 

with these strains.

1.4.3 M odeling the market

We model competition among firms as a two-stage game. First, the firms simul­

taneously decide whether to enter the industry. Each entering firm incurs a fixed 

cost / .  The manufacturers for influenza vaccine decide on production quanti­

ties six to eight months before the onset of the flu season. Hence the Cournot 

(1838) model is reasonable for the competition among the entering firms in the 

second stage. Each firm sets its target production quantity, q{. After that, each 

firm’s yield a,{ is realized, total production q =  a ^  occurs and price p is set 

according to the above inverse demand function.

W e so lv e  th is  tw o-stage  gam e u sin g  backw ard in d u ction . W e first so lve th e  

second stage game for a given number of firms in the industry and derive the 

equilibrium target production quantities and profits as a function of this number.

10
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Then we analyze the first stage game to find the equilibrium number of firms in 

the market.

1.5 Equilibrium of the two-stage game

1.5.1 Post entry com petition  under yield  uncertainty

In the second stage, given that there are n  firms in the industry, each firm de­

cides a target quantity at a cost of c^-. The uncertainty is resolved dur­

ing the production process and qi =  a ^ i  is the actual quantity produced at a

cost of C2<&. The market price is given by the inverse demand function p =

a ( e ) - b ( r , U  qj'j and the expected profit of the ith firm is given by II*(9*) =

. Substituting for qi = a ^ i  in thisEem [ (a  (e) -  b 9 ;) )  9* -  ci9; -  c29*

expression, defining c =  ^  +  C2 and noting that e and a* are independent, we 

obtain

n*(9i) = E  -  b ^  (1.1)

where a = Ee [a (e)]. Let II* denote the maximum profit of the ith firm. Then, 

writing to denote the decisions of all firms other than i, the decision problem 

of the ith firm is

II* =  max II i(qi,q*-i) (1-2)
9i>0

The equilibrium is found by solving the following set of equations:

dlbfe)
dqi

(a -  c)E  [ai] -  2bq*E [a?] -  bE a f > a^q- =  0 Vi (1.3)

Since E  [o;*] =  fi, and Var[o:j] =  a2 Vz, the above system of equations has 

a unique solution that is symmetric. Define the coefficient of variation S = 

Since we are primarily interested in analyzing the impact of yield uncertainty 

on market and socially optimal solutions, we keep p constant and only analyze

11
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the changes in a. Hence we can express all our results in terms of 8 rather than 

a which simplifies the exposition considerably. The unique equilibrium of the 

Cournot game is straightforward:

Lemma 1. The second stage Cournot game with yield uncertainty has a unique 

equilibrium in which:

(i) The target quantity of each firm is given by q* = fc[(n+i^jl+2(72] Vi.

(ii) The expected quantity produced by each firm  is given by E[q*\ = pq* =

b { n + \ + 2 P )  ^

(Hi) For given n, each firm ’s target quantity and expected quantity is decreasing 

in the yield uncertainty as measured by 8.

(iv) The expected profit o f each firm  is given by n *(n) — Vi.

(v) For given n, each firm ’s expected profit is first increasing and then decreas­

ing in 5.

All proofs are provided in Appendix. Note that in the absence of any uncer­

tainty, i.e., <5 =  0, the expected quantity produced reduces to q* =  , while

expected profit reduces to n |  =  : both familiar from Cournot competition

without yield uncertainty. Moreover, for given n, higher yield uncertainty leads 

each firm to produce lower expected quantity.

1.5.2 Entry gam e

Next, we focus on the first stage of the game. We assume that there is a large 

population of identical potential entrants. Each of these potential entrants has 

a reservation profit level of zero. All firms simultaneously decide whether to

12
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enter the market or not. We are not interested in which specific firms out of 

the potential population enter, but only in the equilibrium number of entrants. 

For n* € N to be the equilibrium number of firms in the industry, we must have 

n*(n*) > /  and II* (n* +  1) < /  , as otherwise entering firms are losing money 

or earning sufficient profits to attract additional entrants. Temporarily relaxing 

the integer constraint, the equilibrium number of entrants, x* € R+ satisfies 

II*(x*) =  / .  Let n* <E N denote the equilibrium number of firms under yield 

uncertainty and nd € N be the corresponding equilibrium number of firms for 

the deterministic case. Similarly, let a;*, x*d £ R+ be the respective equilibrium 

numbers after relaxing the integer constraints. Let \n\ denote the largest integer 

less than or equal to n.

Lemma 2. The number of firms in the industry at equilibrium with and with­

out yield uncertainty is given by n*u =  ( ^ f  \A  +  S2̂  — (1 +  252)

respectively.

and n*d =

We now use these results to determine the impact of yield uncertainty on the 

equilibrium number of firms n* using the deterministic equilibrium number nd 

as benchmark. One might expect that uncertainty always (weakly) reduces the 

number of entrants in equilibrium, but the following proposition shows that that 

is not necessarily true.

Proposition  1. The equilibrium number of firms under uncertainty (n*u) and in 

the deterministic case (n*d) satisfy (i) n*u < n d if {vb7 > 4 a n d 5 > 5i}  or Tbf <

4 and (ii) n* > n*d if  j j g  > 4 and 5 < where <5? =  -  l )  -  1.

Recall that — I =  n*d. Thus, if the industry can support at most

three firms at equilibrium without uncertainty (nd < 3), then any amount of yield 

uncertainty (weakly) reduces the number of firms at equilibrium. However, if the

13
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industry can support three or more firms at equilibrium without uncertainty, then 

the equilibrium number of firms is (weakly) greater than n^ if the uncertainty is 

lower or equal to a certain threshold. In other words, large uncertainty always 

results in exit of firms from the industry relative to the deterministic case, while 

limited uncertainty can actually cause more firms to enter in certain cases.

To understand this, observe that yield uncertainty has two effects on firms’ 

expected profits. First, yield uncertainty reduces the expected quantity produced 

by each firm. This has a negative effect on the expected profit. A secondary 

effect is that yield uncertainty increases the market price by reducing output; 

this affects all the units and not just the marginal units, which has a positive 

effect on the expected profit. For small levels of uncertainty, the positive effect 

can dominate the negative effect and hence cause a net increase in the expected 

profit, thus attracting new entrants. However, for large uncertainty the net effect 

is always negative and hence lowers the equilibrium number of firms. Moreover, 

from Proposition 1, it follows that the threshold level of uncertainty S* is non­

decreasing in the intercept of the inverse demand function a and non-increasing in 

the fixed cost of entry / ,  marginal cost c, and price sensitivity b. In other words, 

if the industry has very high cost of entry, then relatively small uncertainty can 

reduce the number of entrants.

1.5.3 Total vaccine supply

While clearly related to the number of entrants, we are ultimately interested in 

the impact of yield uncertainty on total expected quantity of vaccine produced 

in equilibrium, since in our model that is directly linked to the number of vac­

cinations and hence to the health care outcome for society. Let q% be the total 

quantity produced at equilibrium in the absence of uncertainty and E  [g*] the to-

14
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tal expected quantity produced at equilibrium under uncertainty. In Proposition 

1, we already saw that limited levels of uncertainty can lead to increased entry. 

However, the next proposition shows that this is not true for total vaccine supply.

Proposition 2. E[ql\ <  V<5 > 0, i.e., the expected quantity produced by the

market under yield uncertainty is lower than or equal to that in the determ inistic 

case.

The above result is true even for some levels of uncertainty where the number 

of firms at equilibrium is higher than in the base case, i.e., <5* > 6 >  0. One 

might expect that higher quantities imply better societal outcomes, as production 

quantity equals number of vaccinations in our model. However, as seen below, 

we can prove this only in certain range of the yield uncertainty.

1.5.4 Social welfare

To characterize the impact of these effects on consumers, we compare the con­

sumer welfare with and without yield uncertainty. At equilibrium, let E[CSu(q^)\ 

denote the expected consumer welfare under uncertainty and let C Sfiq%) de­

note the consumer welfare in the absence of uncertainty. Formally, when to­

tal quantity produced is q, total expected consumer utility from vaccination is 

E  [/„’ ( a — bu)du\ and the expected amount paid by the consumers for vaccination 

is E  [(a — bq)q\. Hence, the expected consumer welfare in the case of yield uncer­

tainty is given by E[CSu{q*u)\ =  E  f* u(a -  bu)du - { a -  bq*u)q*u = \E  [(g*)2]. 

Similarly, in the deterministic case, the expected consumer welfare is given by 

CSiit i)  =  I M ) 2 . Then;

Proposition 3. Define 51 =

min > 0 : V l  + $2 ( $ $ )  ~  (1 +  25*) +  5 2  <

15
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Then, the expected consumer welfare in equilibrium with and without uncertainty 

satisfy E[CSu(q*)\ < C Sd{q*d) i f  5 > <S|. Also, 8?z > 8*

This result states that large uncertainty reduces the expected consumer wel­

fare when compared to the deterministic case . The contrast with Proposition 

2 (which holds for any level of uncertainty) arises because consumer welfare de­

pends on E  [q2], not on E  [q\. We are unable to compare C Sd(q*f) and E[C Su(q*)\ 

when 5 < 6%.

1.5.5 First best solution

Having understood the impact of yield uncertainty on equilibrium entry and 

quantity supplied, we can now consider various interventions that could drive the 

market outcomes closer to the socially optimal ones. First, we formulate and 

solve the decision problem of a social planner who wants to maximize the total 

social welfare, then we compare the socially optimal solution to the equilibrium 

outcomes derived above.

“First-best” denotes the solution to the social planner’s problem of maxi­

mizing the total social welfare or the total surplus of society by choosing the 

number of firms (n) and the target production quantity of each firm (qf) (Vives, 

1999). This presupposes the existence of an omnipotent and omniscient benevo­

lent agency, possibly government, that can costlessly and perfectly control both 

the structure of the industry and the conduct of the firms in the industry. Then 

the social planner’s problem can be formulated as:

max E  [W(q, n)] =  max E
<li,n qi,n

where q = Y17= l E = a *E denotes the total quantity produced by n  firms. 

The first term is the total expected consumer utility, i.e., the area under the de-
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mand curve for consumers who do purchase, and the second term is the expected 

variable cost of production if q(n) is the total quantity produced. The third 

term is the total cost of entry incurred by society if n  firms enter the industry. 

Simplifying we obtain the following social planner’s problem:

max E  [W (q(n), n)] = max (a — c)E (q) — ^E (q2) — n f  (1.4)
qi,n qi,n  2

This problem can be solved optimally by first fixing n  and optimizing over % 

which we call the quantity problem. In the second step, we substitute the opti­

mal qi in the original problem and optimize over n. We call this the structural 

problem.

Lemma 3. Let q (b denote the first-best planned production quantity of the ith 

firm  and let q{b denote the corresponding actual quantity produced. Then (i) q{b =

=  2#  and (*) E  [<lib =  b J -T - 'm ; where 5 = ^ as defined earlier.

For a given number of firms, the socially optimal target quantity and expected 

production quantity for each firm is twice that under competition. The next 

step is to characterize the socially optimal number of firms. Substituting the 

expression for q{b in (1.4) and simplifying, the structural problem is:

2 (a — c)2 n{ 1 +  52) 
b (n +  1 +  252Y

and the result is characterized in the following proposition.

max E  =  max • , ....X I  2 “  nf  (L5)

P ro p o sitio n  4. Let n^b denote the number of firms in the first best solution. 

Then 1 <  < 1 +  252. Also n^b — 1 if  ^  ^

In the deterministic case, where S = 0, it is easy to see that n?b =  1. This 

is in accordance with the existing intuition that the first-best solution in a de­

terministic setting involves having a benevolent monopoly which produces the

17
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socially optimal quantity since society then incurs the fixed cost of entry only 

once, nd =  —̂  — 1 < 3  implies that nJh = 1  VJ > 0. In other words, if the 

fixed costs are high enough that the market can support at most three entrants in 

the deterministic case, then the first-best solution is to have benevolent monopoly 

regardless of the level of uncertainty. However, when n*d >  3, there exist levels of 

uncertainty for which society prefers multiple suppliers since the value of diver­

sity of supply is greater than the additional fixed cost of entry. This risk pooling 

effect occurs due to the concavity of consumer welfare. Each incremental unit of 

vaccine produced less leads to higher social costs.

1.5.6 Seond-best solution

Now, we turn to the case where the social planner can regulate the number of 

firms in the industry, but cannot regulate their conduct, so that the entering firms 

engage in Cournot competition in the post-entry game. This solution is referred 

to as the second-best structural regulation or simply “second-best” (Vives, 1999). 

We shall focus on this case in greater detail due to the restrictive assumptions 

required for the first-best. The social planner’s problem in this case is given by

max E  [W (q(n), n)] = max (a — c)E(q) — -E (q 2) — n f  (1.6)
n  n  2

Substituting E(q) = from Lemma (1) and E(q2) = in (1.6),

we obtain:

(o —
max E  [W(q(n) , n)] — max — ——

n n  2  b

(1 +  282)2 +  nd2 
(n +  1 +  252)2

- n f  (1.7)

Relaxing n  to x  G R+, it can be verified that E  [W(q(x), x )] is strictly concave. 

Hence by restricting n  € N+, E [W(q(n), n)\ can have at most two maximizers. 

Let nsf  denote the element of this set of two maximizers and let n f’ denote the
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deterministic optimum. We begin by analyzing the deterministic case and then 

extend the analysis to the case with uncertainty.

Proposition 5. In the absence of yield uncertainty, the second-best number of

firm s is given by n f  e  j  ^(7 5 7 )3 ~  1 “  !> [ ( 757) 3 - 1  +  *}• Also’ nd ~ l <

nZ.

In other words, in the absence of yield uncertainty, the equilibrium number 

of firms can be less than the second-best number of firms but not by more than 

one. This is because in the second-best outcome, the firms are making positive 

profits causing more firms to enter. This result is identical to that of Mankiw and 

Whinston (1986). However, we show that including yield uncertainty can change 

the relationship between the second-best number of firms n f  and the equilibrium 

number of firms under uncertainty n*. The result is summarized in the following 

proposition:

Proposition 6. The number of firm s in equilibrium n*u and in the second-best 

solution n f  satisfy (i) n f  > n* if  8 >  8% and (ii) n f  — 1 <  n* if  8 <  8%, where 

St >  0 solves ^  =  a a f f f i v a 7.

This shows that if the yield uncertainty is larger than a certain threshold, then 

the number of firms at unregulated equilibrium will be less than in the second- 

best case. Since the total expected quantity produced increasing in

n, the industry undersupplies at equilibrium whenever uncertainty is higher than 

that threshold. In contrast, for a low level of uncertainty, the outcome is the 

same as that in the deterministic case.

19
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1.6 A pplication to the U.S. influenza vaccine market

In this section, we apply our model to the U.S. influenza vaccine market. Our 

objective is to determine whether and how much yield uncertainty might have 

contributed to the observed exit from the U.S. influenza vaccine market. We 

start with calibrating our model, then analyze the market equilibrium, evaluate 

the impact of demand-side and supply-side public policies on social welfare, and 

conduct sensitivity analyses.

1.6.1 M odel calibration

In this section, we derive the demand function for the U.S. market by assuming 

uniformly distributed consumer valuations which leads to a linear inverse demand 

function. Consider M  individuals, who each demand zero or one unit of vaccine in 

a single-period context. The individuals differ only in the expected cost incurred 

if they do not get vaccinated, denoted by v. This cost reflects the likelihood of 

getting infected and the resulting costs of health care, lost income etc. We assume 

perfect vaccination, i.e., after vaccination consumers stay perfectly healthy and 

do not incur any health care or other costs; relaxing this would not change our 

results.

Following Brito et al. (1991), we assume that v follows a uniform distribution 

F(v) on the range [w, v]. Let p  be the price of one dose of vaccine and let v* be the 

valuation of the threshold consumer who is indifferent between getting vaccinated 

and not getting vaccinated, given price p. Then for a rational consumer, who 

does not account for the positive externality of vaccination mentioned earlier, 

p = v* and q(p) = (1 — F {v*)) M  is the total demand at that price. Substituting 

F(v*) = y E* and P = v *> we Set q(p) = M  (=E |)- Defining a = v and b =
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the following inverse demand function is obtained:

p =  a — bq (1.8)

In our subsequent analysis we assume that the individuals are rational, but includ­

ing a positive externality does not change our results. While we chose parameter 

values (summarized in Table 1.1) that represent the U.S. situation to the degree 

possible, some of the values are inevitably, at best, very rough estimates.

Table 1.1: Parameter values for the U.S. influenza vaccine market

P a ra m e te r  v($) v($) c ($) /  ($ million) M  (million) 6

V alue 0 8 3 40 300 0.64

The population (M ) was chosen to the be the U.S. population, which is ap­

proximately 300 million (U.S. Census Bureau, 2004). The lower limit of the 

customer valuation (v ) can be normalized to zero. The upper limit of the cus­

tomer valuation ip) of $8 was chosen based on anecdotal evidence (Nichol, 2001) 

of the direct cost of vaccination and the fact that vaccination is a covered benefit 

under insurance for many customers. The true value of u is likely to be much 

higher. But, the underlying distribution is also unlikely to be uniform. If u is 

interpreted as the upper limit of the mass market’s willingness to pay, then $8 

seems to be reasonable. The value of u — 0 was based on the fact that individuals 

behave in a self-interested manner with respect to vaccination.

The variable cost (c) of $3 per dose was based on the costs of procurement 

from the manufacturers (O’Mara et al., 2003) and assuming around 50% gross 

margin. The value of /  is also not directly available. Gottlieb (2004) reports that 

an in v estm en t of around $300 million is required to build a new influenza vaccine 

plant. A 10-20% cost of capital on this investment translates into an annual fixed 

cost of $30 - $60 million dollars. During the 2000-01 season, Parkedale announced
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its departure from the influenza vaccine market, writing off $45 million (Danzon 

et al., 2004). Based on these data, we chose an annual fixed cost of $40 million, 

but let it vary from $20 million to $100 million in our sensitivity analysis.

The yield uncertainty (5) is even less observable. We first estimated industry­

wide yield uncertainty using the data in Table 1.2 (Strikas, 2005). We used the 

time-variation of quantity produced and supplied as a proxy for the underlying 

yield uncertainty. Since vaccination begins in October, manufacturers aim to 

supply all the vaccine by that time. The year-to-year variability in the degree to 

which supply is late is an indicator of the yield uncertainty. However, in order to 

control for idiosyncratic variations such as that in 2004 due to the Chiron failure, 

we normalized the quantity supplied until October (A) by the total supply for 

that year (B).

Table 1.2: Quantity of influenza vaccine produced and distributed (million doses)

Year Supplied by Oct.

(A)

Total supplied, 

entire season (B)

Total

(C)

produced D =  jj

1999 75.8 76.8 77.2 0.987

2000 26.6 70.4 77.9 0.378

2001 43.0 77.7 87.7 0.553

2002 82.7 83.0 95.0 0.996

2003 80.0 83.1 86.9 0.963

2004 51.0 57.1 61.0 0.893

We then calculated the standard deviation and mean of this normalized quan­

tity (D) to estimate 8 for the industry. We corroborated these values of 5 using 

simply the standard deviations for total annual quantity produced (C) and to­

tal annual quantity supplied (B) during 1999-2004. All these values were in the
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range 0.33 — 0.38. This would be an underestimate for the true coefficient of 

variation 8, since it does not take into account the variation between the targeted 

quantity and the final quantity produced in each year. We assumed the value of 

8 =  0.45 based on this exercise. This value is the 8 for the industry comprising 

two firms for the period under consideration. Assuming that the yields for the 

two existing firms are independent of one another, we calculated the 8 for each 

firm as \/2  * 0.45 =  0.64, but let 8 vary from 0 to 3 in the sensitivity analysis in 

the light of uncertainty about the true vtalue of 8.

1.6.2 A nalysis o f market equilibrium

Here, we calculate the equilibrium for the U.S. influenza vaccine market as pre­

dicted by our model. Table 1.3 summarizes the difference between the determinis­

tic (5 =  0) and the stochastic yield case (5 = 0.64) for the equilibrium and optimal 

(second-best) solutions. The results show that even a relatively low level of yield 

uncertainty (5 =  0.64) can eliminate the excess number of entrants at equilib­

rium predicted by the deterministic model, in this case because the number of 

entrants in the optimal (second-best) solution increases. More importantly, yield 

uncertainty results in a substantial reduction (17%) of expected total quantity 

produced and a corresponding reduction in social welfare (27%) and consumer 

welfare (19%).

The equilibrium prediction from our model under uncertainty matches fairly 

closely with the observations from the U.S. market. While two firms had been 

in the market from 1999 to 2004, a third firm has entered in 2005. The real 

equilibrium industry output is around 100 million doses, in the same ballpark as 

the predicted 117 million. While this in itself certainly does not imply that our 

model and parameter values are correct, it seems to indicate some face validity.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table 1.3: Equilibrium and second-best solutions for the influenza vaccine case

Solution <5 =  0 8 =  0.64 Difference

Socially optimal (second-best) number of firms 2 3 50%

Equilibrium number of firms 3 3 0%

Equilibrium industry output (million doses) 141 117 -17%

Equilibrium price ($/dose) 4.25 4.88 15%

Equilibrium profit per firm ($ million) 58.6 57.0 -3%

Equilibrium consumer surplus ($ million) 180 146 -19%

Equilibrium social welfare ($ million) 319 258 -24%

1.6.3 Evaluation o f dem and-side and supply-side policies

Having calculated the equilibrium outcomes, we now compare the performance of 

various policy interventions intended to improve the social welfare. These policies 

can be classified into demand-side and supply-side measures. An example of a 

demand-side policy is to improve awareness about the benefits of vaccination 

and thus implicitly shift the demand curve upward through an increase in a in 

(1.8). A supply-side intervention discussed in this essay is structural regulation, 

where the government regulates market entry through instruments such as entry 

taxes, subsidies or regulatory costs. Technological interventions such as a new 

production process to reduce the yield uncertainty are not considered here. We 

vary a (or correspondingly v) and 6 from Table 1.1, keeping other parameters 

fixed, to compare the demand- and supply-side interventions under different levels 

of yield uncertainty. We only compare the outcomes of these policies, not the 

costs, since that is not our focus and we are not aware of any reasonable data to 

estimate these costs. Clearly any actual policy decision would require analysis of 

the costs as well as benefits.
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First, we study the impact of demand-side policies on the structure of the 

industry (n* and for different values of a and 8. In Figure 1.1, 6 represents a 

$ increase in the value of a (or correspondingly 0) above the base case considered 

in section 1.6.2, where v =  $8 . We consider 6 = 0.4,0.8,1.2 and 1.6. This 

corresponds to a 10% to 40% increase in the valuation of the average consumer 

given our intial range of [v, v] = [0,8]. Figure 1.1 verifies the result proved in 

Proposition 6 : yield uncertainty beyond a particular threshold can cause less 

entry than is socially optimal. This threshold increases as the demand curve 

shifts up, i.e., as a increases.

R

0.5 1.50.5
Coefficient o f variation

1.5 2
•nu*

C o e ff ic ie n t  o f  v a r ia t io n

10

0.5
C oefficient o f variation

1.50.5 1 1.5
Coefficient o f variation

nu*

Figure 1.1: Equilibrium and socially optimal number of firms as a function of the 

coefficient of variation, 8, for different demand side interventions

Next, we study the impact of supply- and demand-side interventions on social 

welfare under various conditions depending on the value of 8. Let E  [W (n, 0)] 

denote the social welfare when n  firms enter the market and 6 is as defined 

above. This can be interpreted as the effect of demand-side interventions such 

as improved awareness or better insurance coverage. The base case is given
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by E [W (n^, 0)], i.e., no supply- or demand-side intervention. We measure the

performance of demand-side intervention by calculating and the
a  E \ w ( n sb 0)1performance of supply-side intervention by calculating rs — 0̂ | • We plot

r<i and rs as a function of 5 in Figure 1.2.

7.00
rd, rs

6.00

rs (8=$1.2)5.00

4.00

3.00

2.00

1.00
0 0.5 1 1.5 2

Coefficient of Variation

Figure 1.2: Impact of supply-side and demand-side interventions for different 

values of the coefficient of variation, 5

The results show that in the given parameter range, a demand-side policy 

causing a 10% increase in the valuation of an average consumer already results 

in a higher increase in social welfare than a supply-side policy of regulated entry; 

higher increases in valuation result in even higher social welfare. Recall, though, 

that the costs of implementing these policies are not included in our model and 

we do not know whether achieving a 10% increase in the valuation of an average 

consumer may be much more complex and costly than implementing a supply-side 

policy of regulated entry.
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1.6.4 Sensitiv ity  analysis

Since we are most uncertain about our estimates of /  and 5, we conducted a 

sensitivity analysis to ascertain the impact of these parameters on our results. 

Recall that we have assumed /i to be constant and hence the change in <5 is 

affected through change in a. The results are summarized in Table 1.4. Each cell 

contains a pair (n*, nsb), i.e., the equilibrium number followed by the second-best 

number of firms for each combination of /  and 5.

Table 1.4: Equilibrium and socially optimal number of firms for different values 

of /  and 5___________________________________________________________

/  ($ m illions) 5 =  0 5 =  0.5 5 = 1 5 =  1.5 5 =  2 5 =  2.5 5 =  3

20 5,5 6,3 6,5 6,6 6 ,6 4 ,6 X

30 4,3 4,3 4,4 4,4 3 ,4 1 ,3 X

40 3,2 3,2 3,3 3,3 1,3 1,2 X

50 3,2 3,2 3,3 2,2 1,2 X X

60 2,2 2,2 2,2 1,2 1,1 X X

80 2,1 2,2 1,2 1,1 X X X

100 2,1 1,1 1,1 1,1 X X X

The cells with X indicate that the industry is not viable for those combinations 

of /  and <5: even one firm producing the vaccine would result in negative social 

welfare. We pay particular attention to cases where n*u <  nsb, highlighted in 

bold, as those are the cases where yield uncertainty can help explain lower entry 

than is socially optimal. The sensitivity analysis demonstrates that at higher 

levels of the fixed cost of entry, / ,  even relatively low levels of yield uncertainty 

can result in less than optimal entry at equilibrium. Table 1.4 also shows that 

for a given level of yield uncertainty, an increase in fixed cost /  reduces the
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equilibrium number of firms. This provides an indirect support for the hypothesis 

that increased regualatory cost could explain the exit of firms from the U.S. 

market. Conversely, for relatively low levels of yield uncertainty, including those 

in the range we estimate and for most values of fixed cost, the presence of yield 

uncertainty does not change the equilibrium number of firms.

To summarize, the predictions of our model match reasonably closely with the 

observations from the U.S. market as seen from Table 1.3. W ithout accounting 

for the cost of implementation, we found that demand-side policies had higher 

impact on social welfare than the supply-side policies over the range of parameters 

valid for the U.S. market, although our analysis only addresses a part of this issue 

and suffers from significant limitations.

1.7 Concluding remarks

In this essay we analyze the effect of yield uncertainty in Cournot competition. 

The model is based on the context of the market for influenza vaccine, but applies 

to other settings with yield uncertainty, fixed cost of entry and Cournot competi­

tion. We show that if yield uncertainty is sufficiently large, less firms will enter in 

equilibrium than at the social optimum with regulated entry. This is in contrast 

to the traditional result (on Cournot competition without yield uncertainty) that 

excess entry will occur at equilibrium relative to the second-best social optimum. 

We also show that this uncertainty can reduce the expected total industry output 

and the expected consumer surplus in equilibrium. These results continue to hold 

even in the presence of positive externalities of vaccination.

W e report n um erical an alyses w ith  p aram eter values p ertin en t to  th e  U .S. 

influenza vaccine market. The predictions for number of firms and quantity
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supplied are broadly comparable to what we actually observe in practice. In the 

relevant range of parameters, we find that including yield uncertainty eliminates 

the excess entry compared to the socially optimal number of firms predicted by 

the traditional oligopoly model. However, in explaining the exit of firms from the 

market over years, increasing fixed cost appears to be a more significant factor 

than the yield uncertainty. We also compare the performance of demand-side 

and supply-side policies aimed at improving social welfare. We find that demand- 

side policies, though possibly much more difficult and costly to implement, are 

likely to be significantly more effective than supply-side policies for the range of 

parameters characterizing the U.S. market.

1.8 Proofs

P roof o f Lem m a 1: The proof is analogous to that for the deterministic case. 

The ith firm solves the concave maximization problem in q* given by (1.2). Hence 

the first order condition in (1.3) is necessary and sufficient to obtain the equilib­

rium target quantities. Using E  [cqOj] =  E  [«;] E  [cy.j\ (random variables and 

aj are independent), V a r(a i) = E[af] — (E  [«;])2 =  a2, E  [a;] =  /i Vz (each 

firm has the same yield distribution), and simplifying (1.3), we obtain a unique 

solution to the above set of equations given by:

-* _  (a ~  c)(i , .
qi b [ (n + l)n 2 + 2 a 2] t !-9)

The expected production quantity of the ith firm is given by

E  ^  =  E  ^  ^  =  6 [ ( ™ + 1 ) / J  +  2 c72] =  6 (n +  1 + 2 5 2) V* ^  ^
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which is decreasing in 8. This completes the proof for parts (i), (ii) and (iii).

Substituting (1.9) in (1.1) and simplifying yields

n *(„) = (g ~ c)2(<52 + (i u)
A )  b(n +  1 +  252)2 U J

which proves part (iv). Differentiating (1.11) w.r.t. 8, we obtain 9Tlggi  ̂ =

Hence> < 0 for 5 >  if n  >  3 and ^  <  0

for V8 >  0 if n  <  3, which proves part (v).

P roof o f Lem m a 2: We first ignore the integer constraint on the number of 

firms and solve for x * by using the condition n*(x*) =  / .  Using (1.11) and 

rearranging the terms we get:

*x nt ^ ^ ■ V T T P  -  (1 +  2<52) (1.12)

Since II*(a:) is decreasing in x, n*u =  =  ^ g ^ \ / l  +  82 — (1 +  282), using (1.12).

P ro o f  o f P ro p o sitio n  1: Since the derivatives w.r.t. 8 >  0 and 82 have the 

same signs, we focus on the latter due to ease of analysis. Differentiating (1.12)
( a - c ) ___1_w.r.t. 52, we get

dx*u

<52 =  0
(a~c) _  9 For (a~c) < 4 
2v/E7 %/E7 -  ’

d82

Ŝ —O \/l+£2

< 0 = +  <  < =*> n* < n*d VS > 0
<52=0

Next, consider the case >  4. Substituting 5 =  0 in (1.12), we get xd =  

— 1. Comparing this with (1.12) and simplifying, we obtain x* < x*d

8 > 5*, where 8* =  y  {^§ J  ~~ l )  — 1- Since =  n* and |_a£j =  nd, we obtain 

8 >  w* < nd and 8 < <5* = >  n* > n*d.

P roof o f Proposition 2: With yield uncertainty, the total quantity produced

at eq u ilib riu m  is  E  [q*] =  Y £ i  E  f e l  =  ^ + 1+ 2̂ ) » u sin S (1-10). W ith o u t y ie ld
♦ / \

uncertainty (5 =  0 and n* = nd), we get qd = • Comparing the two and
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using nd — 

<&>E [4

a —c   1

VZf 1 and n* = <^VTT¥-(1 + 2S1)

(1 +  282)
a
Vbf

Consider the following inequality:

-  1 > -  (1 + 2 s2) (1.13)

(1 +  252)
a — c

L W
- 1 >fc~lVTT^-(l + 242) (1.14)

Write LHS and RHS for left and right hand side of (1.14) respectively. R H S = 

L H S  at 52 — 0. Again, since we are only interested in the sign of the derivative,

we can differentiate w.r.t. 52. Note that =  2 7bf 1 and
a —c 1 - 2 .  So, d R H S  I < dR H S  I < dL HS  I d L H S  I

dR HS
d52

HenceV b f 2 V l + S 2 dS2 l<52>0 ^  d62 l«2=0 ^  dS2 l<52=0 dS2 l<J2> 0 ‘

(1.14) and consequently (1.13) holds V5 > 0. Hence, we have qd > E  [g*J \/S >  0.

P roof o f Proposition 3: Begin with calculating E[(q*)2] and E[CSu(q*)]. Us­

ing (1.9) and simplifying we obtain:

E [ C S M )]  =
( o - c ) X ( n ;  + i 2) n ;tn :  + S'-jf

(1.15)
2 !>(«; + 1 +  262)2 2

Hence, for the deterministic case (5 =  0 and n* =  nd),

c s M )  =

Next, define h{8) 4  ( ^ f )  V T + P  -  (1 +  252)+  52 -  

unimodal in S for S > 0 and h(0) = 0. So, 5 | =  min {5 >  0 : h(8) <  0} ex-

a —c    i
v̂ 7  1

(1.16)

, which is

ists. Thus, 8 > 8 2 yuj XJ > î Vbf ) VTT52 (i + 252) + 52 > 
\ / l  +  52 — (1 +  252) +  52. This, along with the expressions for n*d and

n* and (1.15) and (1.16), proves the first part of the result. Also, 8 > =>■

n*d > n* + 82 =$■ nd > n* 8 > 8*. Hence 5 | >  hi­

p ro o f  o f L em m a 3: Note that E(q) = E  E ?=1 ft] =  E  E "= i =  r T h=i &
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1

F
h

to
r

=  E
n

J 2 qf + E
\  i —1 / » 1 -  tyj

Similarly, 

E(q2) = E

=  E  la i] Y , q* + E  ^ E  n  X J  qiqj =  (ff2 + ^  J 2  qi + X J  m j
i = 1 iy£j i = 1 ij&j

Substituting the expressions for E(q) and E(q2) in (1.4) and simplifying, we 

obtain

b
max < E  [W(q(n), n)\ = (a — c)[a $
n>n I t= l

( °2 + ^ 2) qi + X ]  qiqj
I#i = 1

— n f

We first maximize over qi, keeping n  fixed. The resulting objective function is 

jointly concave in & with first order condition

b
(a — c)n = (2a2 + n 2) qi + ti2^  Qk

k= i

Vi

This condition and consequently the optimal solution q* is symmetric in i. Sum­

ming over i and utilizing symmetry we obtain qfh — ^^+ 1)^+ 2^] • Similarly, the 

expected quantity produced by each firm is given by E  [q*\ = •

P roof o f Proposition 4: First, consider the continuous relaxation of (1.5)

to a: 6 The first order condition w.r.t. x  gives 2 (a - c )2( l+ 5 2)(l+2<52—x) _
b f

(x + 1 +  252)3. Note that the left hand side is decreasing in x  and positive only 

for x  < 1 +  262. The right hand side is increasing in x  and always positive. Since 

we require that the expected quantity produced is non-negative for any n, it is 

required that n > 1. Thus, if a solution exists to this equation, it is unique and 

lies in the range 1 < n  <  1 +  252. Also, a necessary and sufficient condition 

for a solution to exist is given by 2-~ fil (b.AK.1 >  (x 1 4- 252) or

alternately  ̂ <  ^=r-. If this condition is not satisfied, then n  =  x  — 1,

since otherwise would imply that dE[W(x)}
dx < 0 .

x —\
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P roof o f Proposition  5: Consider the continuous relaxation of (1.7) in x  €E R+ 

instead of n  G N. Clearly, E  [W(q(x), x)\ is also a concave function of x  and has 

a unique optimum given by the following first-order condition, 

dE [W (q(x),x)\ _  (a - c f  [2(1 +  2<52)2 +  xd2 -  (1 +  252)521
dx 2b

For <5 =  0, this yields x f  =  ( u j j ) 3 — 1 and hence n f  GE { [ x f \  , [ x f\  +  l}.

( w ) ~  x\ and x *d = { w )  ~ L First check that Xd -  x *d■

(a: +  1 +  2<52)3
/  =  0 (1.17)

Recall that n*d =

Now n f  — 1 < [ x f \  < x f  < x f  Clearly, n sb n sb 1 <n*.

P roof o f Proposition  6: We define x*u and x f  corresponding to n* and n;-,sb

respectively. Thus x:sb
u

dEW(x)
dx — 0 >. First, in order to compare xf

and x f ,  we calculate . Using (1.17) we get:

dE \W (q{x),x)}

"o'1

I _2 (1 +  2<52)2 +  x*J2 -  (1 +  252) <52’
dx

rO1
8II8 (x* +  1 +  2<52)3 - /

Also, since /  =  I I | « )  =  at equilibrium:

dE  [W (q (x ),x )]
dx

(a -  c)2 
26/

(a -  c)2

2(1 +  262)2 +  x*J2 -  (1 +  2<52) 62 
{x*u +  1 +  2(52)3

(a -  c)2(l +  52) 
b{x*u +  1 +  252)2

2 bf{x*u +  1 +  262Y
2(1 +  2<52) 2 -  3 (1 +  2<52) 52 -  x*J2 -  2(x*u +  1 +  2<52)

A sufficient condition for x*u <  x f  is dxrsb dE \W{q(x),x)\ > 0. Substituting x*u and 

simplifying gives x*u < x f  if —  > 9̂ .  In addition,n* =  [x*J and

n:sb e  { [ x f\  , [ x f  J  + 1 } .  Thus, x*u < x

conditions we obtain 2(1+2
2+<S2 >

+57'
sb —-> n*u < n f .  Combining these two 

n* < n f .  It is easy to check that

2(i+26 )Vi±ŝ _ -g an increasjng function of 5. Defining~2W 
5* = {<5 > 0 2(1+2<S2) v T + ^ the above condition is equivalent to n* < n sb
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if S > <5g. This proves the first part of the proposition. For the second part of 

the proposition, combining the fact that 2(1+2̂ V 1±£! <  £=c x * > x sb an(j 

x*u > x su =$■ n*u > n ^ , we obtain ^  n* > n f*. Note that the

left hand side of this expression is increasing in <5 and using the same argument 

as above we conclude that n* > nf,6 if 5 < 6%.
Ur -----  U-   O
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C H A P T E R  2

R ation ing  o f H IV  treatm en t in 

resource-constrained  settin gs under supply

uncertainty

2.1 Introduction

Access to highly active antiretroviral therapy (HAART) for HIV+ patients in 

Sub-Saharan Africa and other resource-constrained regions has barely reached 

1 million patients despite growing attention from the international donor com­

munity (PEPFAR1, GFATM2, CHAI3, etc.) and WHO’s ambitious “3 by 5” 

program which aimed to get 3 million people on treatment by 2005. According 

to WHO (2005b), the gap between available supply of drugs and demand is un­

likely to be eliminated in the near future. Hence, governments and clinics in these 

countries have to make difficult choices related to the selection of new patients 

(or treatment rationing) while scaling up HAART programs. Various qualitative 

guidelines developed by WHO and UNAIDS (Rosen et al., 2005; McGough et al., 

2005; Macklin, 2004) exist for the selection of new patients from different seg­

ments of the population based on various social, economic and clinical criteria. 

However, they provide no guidance on how many new patients to enroll in a given

1 President’s Emergency Plan for AIDS Relief
2Global Fund for AIDS, Tuberculosis and Malaria.
3Clinton HIV AIDS Initiative.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

period.

On the other hand, extensive field work aimed at quantifying and planning 

for new enrollments has been done by organizations like John Snow Inc. (JSI) 

and Management Sciences for Health (MSH) as a part of their partnership with 

PEPFAR. The approach followed in most of this work, so far, is static and deter­

ministic, hence ignoring two important characteristics of the operating systems 

under consideration. Firstly, in addition to the aggregate shortage, the supply 

received at individual clinics is highly variable and unpredictable, leading to treat­

ment interruptions (ITPC, 2005; BBC News, 2004; IRINNews.org, 2005). These 

unanticipated treatment interruptions can lead to adverse clinical outcomes such 

as treatment failure and drug resistance (IOM, 2005; WHO, 1998). Secondly, 

enrollment decisions in the current period have a direct impact on the clinic’s 

ability to guarantee treatment continuity in the future periods in the wake of 

supply uncertainty and shortge.

Thus a clinic administering HAART faces a trade-off between expanding treat­

ment to new patients in the current period but facing an increased probability of 

stock-outs or treatment interruptions in future periods and restricting access to 

new patients in the current period but being more likely to offer continuous treat­

ment for current patients. The resulting tension can be sensed in the following 

quote from a health care provider in Amajuba District, South Africa (Wu, 2004): 

“. . .  when you run out of stock you begin to stress. You don’t know when the 

stock is coming. We counsel patients so closely on adherence, and on what hap­

pens if you miss a dose. Then they come in all frantic and we have to deal with 

the problems.” Our discussions with JSI revealed that decision rules (policies) 

used  in  p ractice  to  m anage th is  trade-off includ e ‘a lw ays enroll a  n ew  p atien t if 

drugs are available’, ‘stop enrollment of new patients if the available inventory
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reaches a predefined safety stock level’ and ‘enroll new patients upto a predefined 

enrollment cap’. However, without formal analysis, it is not immediately appar­

ent how these policies perform relative to each other and which of these, if any, 

is optimal.

To investigate this issue, we model the clinic’s trade-off using a discrete time 

stochastic dynamic program. At the beginning of each period, the clinic receives 

a drug shipment of uncertain quantity over which it has little or no control. 

The clinic faces a deterministic demand from patients who have been treated in 

previous periods (current patients). In addition, the clinic can initiate treatment 

for patients from a large pool of previously untreated patients (new patients) 

reflecting the situation that total supply is not enough to meet total demand. 

Knowing the available inventory of drugs and the demand from current patients 

at the beginning of each period, the clinic needs to decide how many current and 

new patients to treat in each period to maximize the quality adjusted life years 

of its patients over the planning horizon. We employ this model to answer the 

following questions:

(i) W hat treatment rationing policy maximizes the clinic’s objective? What are

its salient characteristics?

(ii) How do above policies followed in practice compare to the optimal policy?

(iii) W hat is the impact of supply uncertainty on the performance of various 

rationing policies?

We first show that the optimal policy for our problem is a ‘modified base- 

sto c k ’ ty p e  p o licy  w here th e  b ase-stock  levels  correspond to  th e  desired  level of  

inventory before receiving supply and the size of current patient pool. Then, 

we derive conditions on our problem parameters under which it is optimal to
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prioritize current patients over new patients, an accepted standard of care. Under 

these conditions, the optimal policy is characterized by an enrollment cap in each 

period. If the available inventory is greater than this threshold it is optimal to 

carry over the excess inventory to the next period as a safety-stock. For the finite 

horizon formulation, we show that the size of this safety-stock is state-dependent 

and dynamic.

The remainder of the chapter is organized as follows. In section 2.2, we de­

scribe the operational challenges of delivering HAART in resource-constrained 

settings in greater detail. Section 2.3 provides a brief review of the various 

streams of literature related to this chapter and outlines our contribution to 

them. The model formulation is described in section 2.4. The optimal policy 

and its properties are derived in section 2.5. In section 2.6, we introduce the 

resource-constrained condition which simplifies the model formulation and allows 

to study various properties of the optimal policy. Section 2.7 describes heuristics 

which are either used in practice or have practical appeal. We provide numerical 

illustrations to compare these heuristics with the optimal policy in section 2.8. 

Section 2.9 provides concluding remarks. Proofs for all the theoretical results are 

provided in the appendix.

2.2 Background

Acquired Immunodeficiency Syndrome (AIDS) has caused more than 25 million 

deaths over the past 25 years. As of 2005, close to 40 million people were living 

with Human Immunodeficiency Virus (HIV) and around five million were newly 

infected in 2005 (WHO, 2005a). Sub-Saharan Africa is the worst affected region 

with just over 10% of the world’s population but more than 60% of all the people 

living with HIV and AIDS. Prevalence rates in many countries in this region
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are in the range of 20% to 30%. WHO (2005a, 2005b) provide a more detailed 

discussion of the epidemiology of the disease and the unprecedented social and 

economic damage caused by it.

HAART, a complex regimen comprising multiple antiretroviral (ARV) drugs, 

has been available for treatment against HIV /  AIDS in many developed countries 

since the late 1990s (Bartlett, 2006). While HAART can neither cure nor prevent 

HIV infection and AIDS, it has considerably reduced mortality and morbidity 

in HIV+ patients in the U.S. (Palella et al., 1998) and saved more than three 

million life years (Walensky et al., 2006). However, less than 20% of the eligible 

patients in Sub-Saharan Africa and other developing regions of the world, receive 

HAART despite the recent expansion of treatment because of (i) a reduction 

of drug prices by around 37% - 53% (WHO, 2006), (ii) a multifold increase in 

long-term funding by GFATM, World Bank and PEPFAR, and (iii) an increased 

awareness as a result of the WHO’s “3 by 5 initiative” .

The conceptual model presented in section 2.11 elaborates on various chal­

lenges that contribute to this slow progress. In this chapter, we abstract from 

these complexities to focus our attention on the operational bottlenecks such as 

limited capacity for activities such as storage and inventory control, quantification 

and reporting, and security of commodities (GAO, 2006). A major consequence of 

these bottlenecks is the uncertainty in the supply of drugs received by the clinics. 

This supply uncertainty has important implications for the treatment rationing 

decisions made by the clinics through periodic stock-outs of drugs. To maintain 

our focus, we do not model the impact of treatment on prevention through mod­

ified behavior of patients, reduced viral load and increased number of patients 

willing to test. We also do not consider the impact of current program outcomes 

on future resource availability.
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Various incidents of drug stock-outs have been reported in various parts of the 

world including India, Russia, Dominican Republic (ITPC, 2005), Nigeria (Ekong 

et al., 2004), South Africa (BBC News, 2004), Kenya (IRINNews.org, 2002) and 

Swaziland (IRINNews.org, 2005). In addition to this anecdotal evidence, logistics 

assessment surveys commissioned by the USAID and conducted by JSI provide 

systematic evidence of stock-outs and supply uncertainty in Zimbabwe (Nyenwa 

et al., 2005) and Tanzania (Amenyah et al., 2005). These stock-outs cause in­

terruption of treatment for patients which could lead to drug resistance and /  or 

treatment failure (Bartlett, 2006). Oyugi et al. (2007) and van Oosterhout et al. 

(2005) provide systematic evidence of this phenomenon in Uganda and Malawi. 

In extreme cases, drug shortages due to supply interruptions have also resulted 

in the death of patients in South Africa (Health Systems Trust, 2005).

However, this underlying supply uncertainty has not received enough atten­

tion in the quantification and forecasting tools used by clinics or in the academic 

literature. Current approaches include using informal guidelines for deciding a 

safety stock to manage this uncertainty. There is an urgent need for formal models 

to quantify the safety stock required to optimally manage the underlying supply 

uncertainty while scaling up HAART (Daniel, 2006). This is important because 

overdesigning the safety stock would mean blocking scarce funds in nonproductive 

assets and slowing treatment expansion, while underestimating the safety stock 

could result in extremely undesirable stock-outs and treatment interruptions.

2.3 Literature Review

The mathematical model presented in this chapter extends the existing inventory 

rationing models by explicitly modeling the conversion of customers from one seg­

ment to the other. This chapter contributes to the broader literature on health
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care rationing by incorporating quality and access considerations in the objective 

function. In particular, it contributes to the literature on resource allocation for 

HIV /  AIDS interventions, which has predominantly focused on prevention. In 

the context of HAART in resource-constrained settings, it complements the ex­

isting qualitative discussion by providing a quantitative framework for rationing 

treatment between new and current patients at the clinics. Our model can also 

be used to analyze the resource allocation decisions for non-profit organizations 

where uninterrupted service provision is crucial to meeting the organization’s so­

cial objective and thus contributes to the yet sparse operations research literature 

on non-profits.

Our model is related to the models of inventory rationing among customer 

classes of differing priorities (Topkis, 1968; Evans, 1969, Nahmias and Demmy, 

1981; Ha, 1997a, 1997b; de Vericourt et al., 2002). The optimal allocation policy 

in these models consists of a threshold or reservation level for each segment such 

that it is optimal to stop serving a segment if the on-hand inventory drops below 

the threshold associated with that segment. Frank et al. (2003) and Zhang and 

Sobel (2001) study inventory rationing schemes where demand from one segment 

has to be met while demand from the other segment can be either backlogged 

or lost at a penalty. The customer segments in these models are unrelated, i.e., 

customers do not move from one segment to the other as a result of receiving 

service. In contrast, in our model, the two customer segments are inherently 

related as customers from one pool (previously untreated) are moved permanently 

to another pool (previously treated) as a result of the treatment decisions. Olsen 

and Parker (2006) model flows of customers from one segment to the other but 

do n ot con sider ration ing.

Most literature on health care rationing focuses on developed countries with
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the key tradeoff being between efficiency and equity. Wagstaff (1991) provides 

a detailed discussion of the underlying concepts. In the operations literature, 

Zenios et al. (2000) present a normative model for allocating cadaveric kidneys 

among various patient segments. In their context, the key trade-off between 

equity and efficiency is exacerbated because of the constrained supply of kidneys. 

In contrast, the key trade-off in our model is between access (enrolling more 

patients) and quality (providing uninterrupted treatment to enrolled patients) 

which is exacerbated by the uncertainty in the future supply of drugs.

Considerable work has been done in combining epidemiological models and 

optimal control theory to study dynamic allocation of resources in the case of HIV 

epidemics (Richter et al., 1999; Kaplan and Pollack, 1998). However, the focus of 

these models is on prevention interventions and there is no uncertainty regarding 

the availability of resources in these models. In contrast, we focus on treatment 

programs for HIV. We considerably simplify the epidemiological component of 

our model and choose to focus instead on the uncertainty in resource availability 

(drug supply) as a key dimension of our resource allocation problem.

There has been recent qualitative discussion on rationing strategies for HAART 

in developing countries that focus on the issue of “which” new patients to enroll 

(Rosen et al., 2005; Bennet and Chanfreau, 2005). However, it pays inadequate 

attention to two important characteristics of HAART scale-up - (i) patients once 

enrolled have to be treated continuously through their life and (ii) there is a vari­

ability in supply of drugs in addition to the aggregate shortage. We complement 

this literature by incorporating these characteristics in a quantitative model that 

to help clinics decide “how many” new patients to enroll when accurate informa­

tion  ab ou t th e  fu ture su p p ly  o f drugs is n ot available.

The model in this essay could also be applied to resource allocation problems
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in non-profits. To our knowledge, the only other paper that uses operations re­

search methods to analyze resource allocation decision in non-profit organizations 

is de Vericourt and Lobo (2006). They study the allocation of the organization’s 

assets among mission and revenue customers so as to maximize the total dis­

counted social benefit. However, not all non-profit organizations can engage in 

for-profit activities due either to lack of requisitie skills or the domain of their ac­

tivities (Dees, 1998; Foster and Bradach, 2005). Such non-profits have to depend 

entirely on external funding sources which are known to be highly unreliable and 

variable (Gronbjerg, 1992). Also, in homeless shelters and drug rehabilitation 

programs, it is critical to maintain continuity of service to current beneficiaries 

while expanding service to new beneficiaries (Scott, 2003). Our model could be 

adapted to incorporate these concerns and complement the model in de Vericourt 

and Lobo (2006).

2.4 M odel Formulation

In this section, we present the formal model for the decision problem of an individ­

ual clinic in a resource-constrained setting that wants to maximize the expected 

total discounted quality adjusted life years (QALYs) of its patients. Let T  denote 

the length of the problem horizon consisting of discrete decision making epochs 

t — 1, 2, 3...T  where t = 0 denotes the end of the horizon.

2.4.1 Drug supply

Current distribution systems for ARTs in resource-constrained settings consist 

of central medical depots that are typically situated at the provincial or district 

headquarters. The drugs are “pushed” from these depots to the sites of health
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care delivery (WHO, 2005a; WHO, 2003). The ultimate goal is to move to a more 

formal system where clinics order drugs based on their requirements. However, 

inadeuqate inventory management skills at the clinics make this transition from 

“push” to “pull” both difficult and slow (JSI, 2006; WHO, 2003). Also, due to a 

weak transport infrastructure, the drug supply actually received at the clinics is 

uncertain.

To reflect this situation, we model the supply of drugs as exogenous but 

stochastic; order quantity is not a decision variable for the clinic. Extending the 

model to include ordering decision by clinics would be interesting but appears to 

be analytically intractable. Let Zt be independently (not necessarily identically) 

distributed random variables that denote the supply of drugs received by the 

clinic in period t  with cumulative distribution 4>t (•) and support on [2^, 2^]. 

Thus at the time of deciding the number of new and current patients to treat in 

period t, the clinic does not know the actual quantity of drugs it will receive in 

the future periods (1 <  u < t) but only knows the cumulative distribution $„(•)• 

Let I t and Wt denote the inventory of drugs before and after receiving the supply 

in period t so that Wt = It +  Zt.

2.4.2 Patients

The demand for drugs consists of patients who have been diagnosed as HIV+ 

and are eligible for treatment based on the national guidelines. We model the 

demand at the clinic to be composed of two pools of patients: ytfi denotes the 

number of current (previously treated) patients and yt)n denotes the number of 

new (previously untreated) patients at the time of deciding treatment allocations. 

The decision on which segments of patients to prioritize, based on socio-economic 

and clinical characteristics (CD4+ count) is made at a national level (Bennet and
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Chanfreau, 2005) and the clinic faces demand from patients which are roughly 

similar on these attributes. Moreover, the health status of patients as reflected by 

both CD4+ count and QOL score becomes reasonably homogenous after around 

six months of HAART (Cleary et al., 2006). Hence we model the pool of new 

and current patients for an individual clinic to be homogenous along these at­

tributes and capture the average health status of each pool for our analysis. This 

substantially improves the analytical tractability of our model.

2.4.3 System  dynam ics

In each period t, knowing the available inventory Wt and the demand from current 

and new patients ytjC and yt<n respectively, the clinic decides on the number of 

current and new patients to treat denoted by x t,c and x t -n respectively. After 

the treatment decisions, the inventory of drugs drops to It-1 — Wt — %t,c — x t,n 

and the pool of new patients reduces to yt,n — x t,n- At the end of each period, a 

deterministic fraction (3i of all current patients and (32 of all new patients survive 

through to period t  — 1 and the remaining patients die. Thus f32x t,n denotes the 

number of patients who were initiated on treatment in period t and survived, 

thus adding to the pool of current patients in period t — 1. The number of new 

diagnoses occuring at the beginning of the next period t — 1 is denoted by aytjn. 

Thus the system dynamics are given by the following set of equations:

yt—l,c P W t ,c  T (32x t,n  (2-1)

V t—1 ( / ?2 T ®)  i .y t,n  x t ,n )  (2-2)

Wt- 1 =  Wt — X t:c — X t ,n +  Zt- 1 =  It- 1 +  Z t- 1 (2.3)

There are several assumptions associated with the dynamics of our model. 

First, the average survival rates (3\ and (32 and the rate of new diagnoses a
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are assumed to be known with certainty. Including uncertainty in the survival 

rates is non-trivial but our model can be adapted to include survival rates that 

are independent of the uncertainty in the drug supply. Second, /A and /?2 are 

not impacted by the treatment status of current and new patients in period t. 

Inclusion of survival rates that depend on the treatment status in the current 

period would not change our results but would make the analysis algebraically 

more cumbersome. Third, we assume that /?2 +  ot >  1 to reflect the situation 

that the rate of new diagnoses is higher than the mortality rate (WHO, 2005). 

With respect to the drug supply, we assume that there is no limit on the available 

storage for drugs and that the drugs are not perishable. This is true for all the 

drugs used in the first line of treatment, which is our focus here.

2.4.4 O bjective function

As mentioned earlier, the objective of the clinic is to maximize the total quality 

adjusted life years (QALYs) for the patient population over the planning horizon 

T. While QALYs have been traditionally used for clinical decision making at an 

individual level, there has been a recent trend to use QALYs at a population level 

to evaluate alternate policy measures (Zenios et al., 2000; Richter et al., 1999). 

See Loomes and Mckenzie (1985) for a detailed discussion of the related issues.

As discussed before, our patient population consists of two patient pools - 

current and new - based on their treatment history. We further divide each of 

these pools into two subcategories based on the treatment status in the current 

period and assign a quality of life (QOL) score to each of these four categories. 

Thus Si denotes the QOL score for current patients who receive treatment in the 

current period, s2 denotes the QOL score for current patients whose treatment 

is interrupted in the current period. Similarly S3 denotes the QOL score for
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new patients who receive treatment for the first time in the current period and 

s4 denotes the QOL score for new patients who have never received treatment. 

Since we are not modeling the difference in health status of patients within each 

subcategory, Si, S2> S3 and 64 could be considered as average QOL scores for each 

of the four subcategories. Furthermore, since we assume that the underlying 

composition of these categories does not change over the problem horizon these 

parameters are time invariant. Thus the objective of the clinic for a finite horizon 

T  is given by

max E ^  ̂S ht (Xt,ci Vi,ct yt,n)
t=1

(2.4)

where 5 is a single period discount factor and ht is the single period reward 

function given by:

h t  { x t ,c i  X t,n j V t ,c  V t,n )  % t,c T (.Vt,c ^Tc) T  S 3Xt^n  T S4 ( j j t ,n  3 't,n )

=  («1  -  S 2 )  X t ,c + (s3 -  S 4 )  X t ,n  +  S 2y t ,c +  S Ay t)n  (2.5)

Similar objective function has been used previously to analyze resource allocation 

decisions in the context of epidemics (Brandeau et al., Richter et al.). To denote 

that treatment in the current period has positive benefit for both current and 

new patients, it is reasonable to assume (s4 — S2) > 0 and (s3 — S4) > 0 .

2.5 Optim al policy

Using the above building blocks, we now state the decision problem for the clinic 

under consideration. Let Vt (Wt,yt,c) denote the maximum net benefit from the 

clinic’s treatment decisions for the remaining t  periods till the end of the horizon. 

Then the clinic’s decision problem in period t is given by:
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Vt (Wt, yt,c Vt,n)  =  max {ht (xt;C, x tt„) + 6 E  [ W _ i  (Wt- 1 , yt- i , «  S / t - i , ™ ) ] }

s i .  (2.1), (2.2) and (2.3)

Xt,c ^ yt,c

Xt,n ^  JJ/ -Ti

X t,n  + X t)C < Wt (2.6) 

where ht (xt)C, Xtn) (®i ^2) 3” (®3 ^4) ~t~ siyt,c T s4 yt,n•

Equations (2.1), (2.2) and (2.3) are system dynamics described earlier. The 

next two constraints state that the number of current and new patients treated 

cannot be more than the total number of current and new patients in that period 

respectively. The last constraint states that the total number of treatments de­

livered in period t  is limited by the available inventory. We also define Vo (•) =  0.

The model (2.6) is similar to the two-product inventory control models studied 

by Deuermeyer and Pierskalla (1978), Evans (1967) and Simpson (1978) and the 

multi-location multi-period inventory model studied by Karmarkar (1981). We 

use this similarity in the structure to derive the optimal policy for our problem 

in the next section. Let us define the maximand in (2.6) as

f t  {xt,c, Xttn) — ht {xtjCi Xt;ri) T 5E  [Vf—i (Wt—1, yt—1,0 yt—l,n)]

Proposition  7. (i) V t(W t,ytlC,yt,n) Is jointly concave in its arguments, (ii) 

f t  (xt,c, x tjn) is jointly concave in its arguments, (in) The optimal policy for (2.7) 

is characterized by the existence of a vector S* = (/*, y*c, y (n) such that it is 

optimal to move from the state vector (Wt+i, yt+i,c) to S*at the beginning of pe­

riod t before supply  is received, provided such a m ove is feasible. I f  th is m ove is 

not feasible, then it is optimal to reach to the vertex o f the feasible region that is 

closest to vector S*.
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The proof for the first two parts of Proposition 7 follows from the usual 

inheritance properties of dynamic programs. Thus in each period t, (2.7) is a 

concave optimization problem on a set of linear constraints. Hence the third 

part follows directly from the multi-location multi-period inventory model of 

Karmarkar (1981). Thus the optimal policy for our problem is similar to the 

modified base-stock policy for inventory problems with side-constraints.

A more explicit characterization of the optimal policy is possible using geo­

metric interpretation if the state-space is two-dimensional (Deuermeyer and Pier- 

skalla, 1978; Evans, 1967 and Simpson, 1978). Their method essentially involves 

considering different regions of the state-space depending on whether one or more 

constraints are tight and then using KKT conditons to derive the optimal solu­

tion in each of the regions, since in each period, (2 .8) is a constrained concave 

maximization problem. Then induction would be used to show that this structure 

of the optimal policy is preserved through the state transitions.

2.6 M odel reformulation

The method for characterizing the optimal policy discussed above is not directly 

applicable in our case because our state-space is three dimensional and hence 

geometric interpretation becomes very complex. Next, we use the characteristics 

of the resource-constrained setting to reduce the state-space of our problem and 

thus make the problem more tractable.

2.6.1 R esource-constrained condition

At present, drug supply in many developing countries is enough to reach only 

a small fraction of all the eligible patients. WHO does not expect to reach its
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target of universal access until atleast 2010 (WHO, 2006) and PEP FAR targets 

to put only 2 million people on treatment by 2009 (PEPFAR, 2006). Moreover, 

according to the epidemiological update by WHO (2005b): 11 Indications are that 

some of the treatment gaps will narrow further in the immediate years ahead, 

but not at the pace required to effectively contain the epidemic” . To reflect this 

situation, we assume that yt,n >  Wt Vt, i.e., the demand for drugs will outstrip 

supply over the planning horizon. In the appendix we provide an upper bound 

on the support of distributions (•) so that this condition is satisfied. Since 

Vt,n > Wt Vf the feasible set x t,n does not depend on y ^ n . Substituting y t ,n  —
T

(fa + ot) ~  V T ,n— ( 0 2  + aty~ Xi!n and leaving out the constant term involving
i=t+1

yr,n in (2.4), the objective function becomes

{ 6  (/?2 +  cc))lj  x t,n + s2yt,cj  

Defining s4 £  (5 (J32 +  a))* =  -s4 and ht (xt,c, x t,n) =  («i -  s2) x t,c+ (s3 -  s |)  x t>n +
i=o

s 2ytjC, the formulation in (2 .6) can be modified as

Vt (Wt, yt,c) = max { ht (xt,c, xt,n) + SE [Vt-t (Wt- i ,  2/t-i,c)]} (2.7) 

s.t. (2.1), and (2.3)

Xt,c ^  Vt,c

Xt,n T Xttc 5: ^Wt

Thus, we have used the resource-constrained condition to reduce the state-space, 

but this introduces non-stationarity in one of the problem parameters, s\. For 

the remainder of the chapter, we shall focus on this formulation.

2.6.2 Tw o-period m odel

In this section, we shall solve the most simple, yet non-trivial instance of 2.7 

for T  = 2 to highlight some of the difficulties associated with the formulation.
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Specifically, we shall show that the optimal solution can be clinically unaccept­

able. When then derive additional conditions on the range of parameters that are 

sufficient to ensure that the optimal policy possess structural properties that are 

desirable from the perspective of clinical standpoint. We use the same notation 

as described in section 2.4. The only source of uncertainty in this problem is the 

quantity of drugs received at t =  1 whose cumulative distribution is denoted by 

$1 (•). At t  =  2, the available inventory W 2 and size of the current patient pool 

2/2,c are known. The clinic has to decide the number of new and current patients 

to be treated in period 2 and 1 denoted by X2,c , x 2,n, #i,o %i,n-  We need the 

following definitions in order to characterize the optimal policy:

O2 -  s4 (1 -  Sat)) -  (1 -  Sp2) (si -  s3)
fci = 

k2 =

<*A  ( ( S i  -  S2) -  ( s 3 -  5 4 ) )

S3 — S4 (1 + S (A + o;)) + 6 (si — (s3 — S4) (1 + (32))
((s i — s2) — (s3 — s4)) (1 +  8P2)

Proposition 8. The optimal policy for the two period problem is given by:

C ase  I  si — s2 > s3 — s4 :

x *2 c = min {2/2,0 [W2 -  ??]+ } , x \ n =  min {W 2 -  min {2/2,0 [W2 -  v]+} , 6 } , 

x*hc = min {2/1,0 W i}, x*hn =  [Wi -  2/1,c]+ where

^  j  ̂  f t  /v. ) r fTi  ̂  ̂ — ft, 1
77 =  min < x t,n > 0 :  ------< d f 2 _ ’^ i 1 (A) -  Pm,C~

d x2:C ®2,n+X2,c=W2 J [ A J

dx 2,72
< 0 > =

X2,c=m,c

^*i1 (A) + w 2 — (1 + A) 2/2,c l+
1 + A

C ase  I IA  s3 — s4 >  si — s2 and S4 — s2 <  —

x 2,c = 0 , x 2,n = w 2 , x lc  = [Wi -  2/1,n]+ , x*x<n =  min {W i, 2/1 ,n} 

C a se  I IB  s3 — S4 > si — s2 and S4 — s2 > :
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x \ c =  min {W2, y2,c} , ^2,n =  [^2  -  2/2,c]+ , **,<. =  0, x*^n =

Proposition 8 shows that even for the simple two period problem, the structure 

of the optimal policy is quite complicated. The optimal policy depends not only 

on the relative values of the QOL parameters but also on the current system 

state.

In case I, S\ — S2 > s% — s4 implies that the value of treatment is higher for 

previously treated patients. Then, as expected it is optimal to prioritize current 

patients in t =  1. However, the prioritization is not unambiguous for t =  2 

and it depends on the values of the thresholds 77 and 9. Consider the case when 

H 2 — 2/2,c < V < W 2 and 77 < 9. Then x \ fi = W 2 — rj and x \ n =  77. Thus in this 

case, new patients are enrolled before all the current patients have been treated. 

This is because the marginal value from treating a current patient is equal to 

the marginal value from treating a new patient when the supply constraint is 

tight. Thus shifting the treatments from new to current patients would reduce 

the objective function due to its concavity.

In cases IIA and IIB, the condition s3 — S4 > sj — s2 implies that the value of 

treatment is higher for previously untreated patients. In both these cases, it is 

optimal to prioritize treatment for new patients for t=  1. However, this condition 

is not sufficient to maintain the prioritization for both periods. Prioritization for 

new patients is maintained for t = 2 only if s4 is not sufficiently greater than 

S2 (Case IIA). However, if .s4 is sufficiently greater than s2) the prioritization is 

reversed and it is optimal to prioritize current patients for t =  2 (Case IIB).
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2.6.3 Prioritization o f current patients

The optimal policy in Proposition 8 is undesirable, partly because of its complex­

ity, but also because it allows allocation policies that are clinically unacceptable. 

Recent clinical studies have clearly shown that even structured treatment inter­

ruptions can drastically increase the mortality and morbidity in HIV+ patients 

(El-Sadr et al., 2006). Hence, continuous treatment for life is the recommended 

practice once a patient is enrolled for treatment (IOM, 2005). In terms of the 

model, this is equivalent to saying x \  n >  0 only if x*l c = y2.c irrespective of the 

state variables W2 and y2,c. Here we investigate additional conditions on param­

eter values to guarantee that the optimal policy has this structure. It is clear 

that si — s 2 >  S3 — S4 is required for prioritization of current patients in the 

last period. However, Proposition 8 noted that this is not sufficient to ensure 

prioritization of current patients for t = 2. Note that if rj — 0 then the optimal 

policy in Case I would be equivalent to prioritizing current patients for t — 2. 

In the next proposition, we build on this idea to derive sufficient conditions on 

the parameter values so that prioritization of current patients is optimal in all 

periods.

Proposition 9. It is optimal to prioritize current patients over new patients in 

every period if  the following conditions are satisfied:

( Cl) (si -  s2) > (s3 -  s4)

( C 2 )  s2 (1 — S (/?! — 02)) <  (si — s3) (1 — 5f3i) +  s4 (1 — 6 (/?2 +  at — (3\f) 

Moreover, the optimal solution under these conditions is given by

{0 t , [Wt -  yt,c]+ } wherex*tjC = min { y t,c, Wt} and x\ 

0t =  min 0 : ^
I ’ a
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Condition (Cl) states that, on average, the health benefit from treating a 

previously treated patient is higher than the health benefit from treating a new 

patient. This is reasonable since not treating a previously treated patient can 

lead to development of drug resistance and eventually lead to transmission of 

these resistant strains to the susceptible population, a clear negative externality. 

Condition (C2) is less easy to interpret, but it helps to consider a few special 

cases. For <5 =  0, (C2) reduces to (Cl) confirming that for a single period 

problem only (Cl) is sufficient to guarantee prioritization of current patients. 

For /5i =  /?2 and =  S3, (C2) reduces to S2 <  sa (1 +  3 a) which implies that 

the average QOL score of patients with interrupted treatment should not be too 

much higher than the average QOL score of unenrolled patients. Intuitively, if 

(C2) is not satisfied then the penalty from treatment interruption is not high 

enough to warrant prioritization of current patients over new patients.

Now let us analyze the implications of the optimal solution. Treating an 

additional new patient in the current period has three effects. First, there is an 

immediate social benefit of the treatment, S3. Second, it reduces the available 

inventory to be carried over to the next period. Third, it increases the pool of 

current patients by /?2 (adjusting for mortality). The uncertainty regarding the 

supply of drugs in the future periods implies that there is an increased chance that 

this newly converted patient might go untreated in the future. Thus the optimal 

policy balances the expected penalty of interrupting the treatment of previously 

treated patients in the future periods with the immediate benefit of treating an 

additional new patient. The quantity \ W t — &t — Ut,c]+  could be interpreted as 

the safety stock to be carried over to protect current patients against the future 

su p p ly  uncertainty.

It is instructive to contrast Proposition 9 with the results from traditional
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models of ordering and rationing inventory across multiple customer classes. The 

optimal policy in these models usually involves thresholds, one corresponding to 

each customer segment, such that it is optimal to not serve a particular segment 

if the on-hand inventory falls below the corresponding threshold (Topkis, 1969; 

Ha, 1997a, 1997b; de Vericourt et al., 2001). This enables the decision maker 

to carry enough safety stock to protect against the uncertain demand from high 

value customers in future periods. However, in our model, since the supply 

is uncertain and beyond the control of the clinic, a safety stock is built and 

maintained by restricting the enrollment of new patients. This serves to protect 

the “higher value” patients (previously treated patients) from any unanticipated 

supply interruptions in future periods. Next proposition provides more insight 

into the structure of the threshold Qt for the spcial case of (3\ =  /52-

Proposition  10. Let (31 =  /?2- If Qt >  0, then (%) dt =  tpt (Wt) — ytjC and (ii) 

F  (zt~i) >- G  {zt- 1) implies that Qt (F) >  Qt (G ).
f s d

When Pi = p 2 and Qt > 0, the system states in period t  — 1 depend only 

on y t:C +  Qt- Hence, what matters is how much total inventory was dispensed 

rather than how this was divided between new and current patients. Part (i) of 

Proposition 10 shows that in this case, the optimal policy is equivalent to carrying 

over a fraction of the available inventory to the next period as a safety stock. This 

fraction is given by . gjnce the supply is stochastic and

dynamic, this fraction is not a constant but depends on the available inventory in 

that period. Part (ii) shows that if the next period’s drug supply is stochastically 

greater then everything else being equal, the safety stock would be reduced, or 

equivalently, the enrollment cap Qt would increase.
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2.6.4 Infinite horizon

The model discussed so far is for a horizon of finite length denoted by T. However, 

analysis of an infinite horizon model could be appropriate if T  is not known 

with certainty or if T  is long enough so that the infinite horizon problem can 

be considered as an approximation to the finite horizon problem. The infinite 

horizon problem corresponding to (2.7) is stated below:
OO

V* =  max S ^ h t  (xtjC, x t,n) (2.8)
X t , n > 0 t % t , c > 0

s.t. x t,c < yt,c Vi

Xt,n ~F Vi

The corresponding recursive equation in the infinite horizon case is given by: 

V {W ,y c) =  max \ h ( x c,x n) + SE [V (W  -  x c -  xn + Z, (3 (yc + xn))}\
# n > 0 ,£ c> 0  I J

s.t. xc < yc

xn + xc < W  (2.9)

However, for the infinite horizon formulation to be meaningful, the resource- 

constrained condition needs to be satisfied for all periods. A sufficient condition 

for this to happen is provided in the appendix. Other technical challenges in our 

formulation, which make the infinite horizon problem difficult are (i) the single 

peiod reward function h (•) and hence the value function V  (•) is unbounded since 

W  is not uniformly bounded from above, and (ii) the underlying state-space is 

continuous.

Following the approach by Lippman (1974) and Van Nunen and Wessels 

(1978) among others, we define a modified sup norm that bounds V. Also, to 

resolve the issue of continuous state-space, we allow only Borel measurable poli­

cies to ensure that the underlying transition functions have the Feller property
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(Stokey et al., 1989). Using these modifications, we can redefine a Banach space 

over which the contraction mapping approach (Denardo, 1967) can be applied to 

show that the equation (2.9) has a unique fixed point. This result is summarized 

in the following Proposition and the details of our approach are given in the ap­

pendix. A similar approach has been used for consumption investment problems 

by Abrams and Karmarkar (1979) and Miller (1974).

P ro p o sitio n  11. The recursive equation (2.9) has a unique solution V, which 

satisfies V  = V* — limb* and there exists a unique optimal policy such that V*
t —>00

is attained.

2.7 Enrollment heuristics

Proposition 9 describes that under conditions (Cl) and (C2) it is optimal to 

prioritize the treatment for current patients and the enrollment of new patients is 

characterized by a threshold 0*. While prioritization of current patients is followed 

in practice, the enrollment policies that are actually implemented have much 

simpler structure compared to the threshold policy, which involves solving the 

recursive dynamic program (2.7). In this section, we describe two such heuristics 

that have practical appeal and contrast them with the optimal prioritization 

policy from Proposition (9); in the next section we report numerical illustrations 

to evaluate the heuristics.

2.7.1 S afety -stock  policy

A common approach recommended in real life scale up situations is to maintain 

a safety-stock equivalent to a few months of demand to buffer against supply 

uncertainty and probable treatment interruptions in the future periods (Chandani
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and Muwonge, 2003; WHO, 2003; WHO, 2004). We assume that even under this 

policy, current patients are always prioritized over new patients. Thus, using our 

previous notation, a safety-stock policy can be denoted by

x f c =  min {yt}C, Wt} and x%n = [Wt -  (a + 1) yt>c]+ ; a > 0 (2 .10)

where the superscript H  denotes heuristic and ayt)C is the safety-stock, equivalent 

to a periods of demand from current patients. The popularity of this approach 

is largely due to its simplicity and intuitive appeal and widespread use in tra­

ditional inventory systems. However, even among organizations that carry out 

logistics and supply chain implementations, there is a recognition that this simple 

approach might not be optimal and a more scientific approach is needed (Daniel, 

2006). We shall compare the performance of this policy with that of the optimal 

policy in Section 2.8.

2.7.2 M yopic po licy

As seen from Proposition 9, the optimal policy involves the possibility of holding 

on to scarce drugs even though there is an inexhaustible pool of new patients that 

could be enrolled for treatment. This aspect of the optimal policy could be un­

appealing to health care practitioners for ethical reasons. Moreover, many health 

care programs including WHO’s 3-by-5 campaign and PEPFAR programs have 

explicitly focused on number of enrolled patients as a measure of program suc­

cess. Our interaction with supply chain consultants working in this area revealed 

that there is a lot of political pressure to put as many people on treatment as 

possible without fully considering the potential future impact of these enrollment 

decisions.

An extreme form of such a policy that focuses only on the current period 

and completely ignores the impact of new enrollments on the ability to continue
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treatment in the future is obtained by solving the single period problem. This 

myopic policy is given by x™c =  min {ytjC, W t} and x*t n — [Wt — yt,c]+- The next 

proposition provides a sufficient condition for such a myopic policy to be optimal.

P ro p o sitio n  12. A myopic policy is optimal i f  (C l) and (C2) and the following 

condition is satisfied:

( C 3) (s3 - s 4) > S  (si -  s2) +  [s4 -  s2]+ Y  ( 8  (fo +  ot))u
It—1

First note that for <5 =  0, (C3) reduces to S3 >  s4 which we have assumed to 

be true. Thus if the future is completely discounted, myopic policy is optimal, as 

expected. Now for 5 > 0, if s2 >  s4, (C3) reduces to (S3 — s4) > 5 (s4 — s2). This 

is because enrolling a new patient transfers the patient from a pool of low QOL 

score and survival rate into a pool of high QOL score and high survival rate thus 

increasing the total QALY score of the clinic. Hence the only relevant comparison 

is between improving the QOL score of a new patient today and improving the 

QOL score of a current patient tomorrow. On the other hand, if s2 <  s4, it implies 

that the average QOL score of patients with treatment interruptions is worse than 

that of the new patient pool. Hence a myopic policy would be optimal only if the 

benefit from treating a new patient today outweighs the cost from interrupting 

treatment for a current patient in all the future periods.

2.8 Num erical illustrations

In this section, we provide numerical illustrations to evaluate the performance of 

the two enrollment heuristics (myopic policy and safety-stock policy) described 

in  S ectio n  2 .6 .3  re la tive  to  th e  op tim al en rollm ent policy. O ur prim ary ob jec­

tive in this exercise is to examine the impact of the supply uncertainty on the 

performance of these heuristics.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2.8.1 Setting parameter values

In our model, the patient segments are defined on the basis of current and past 

treatment status and not directly on health status. As a result, the QOL param­

eters required in our model were not directly available in the existing literature. 

Table 2.1 shows the parameter values chosen for the numerical illustrations and 

the the source for each of them. The first two studies (Tengs and Lin, 2002; Holt- 

grave and Pinkerton, 1997) are meta-analyses of various studies conducted in the 

U.S. Jelsma et al. (2005) examined the health status of HIV+ patients in South 

Africa using a visual analog scale (VAS) which were then converted into utilities 

using time-tradeoff method. These scores and the methodology are reported in 

Cleary et al. (2006). We assumed that patients starting on HA ART would have 

CD4+ counts less than 200 or show clinical symptoms of AIDS. Hence based on 

the three sources, S4 was chosen to 0.65. For estimating S3, we assumed that 

after one month of treatment, CD4+ count of patients would increase and on an 

average be between 200 and 399 but would be symptomatic. For si, we assumed 

that previously enrolled patients who receive uninterrupted treatment in this pe­

riod would be asymptomatic. However, since Cleary et al. (2006) reported lower 

QOL for patients on HAART for a year, we adjusted our estimate downwards 

from 0.94 to 0.90. It was relatively difficult to estimate S2 using the available 

data as it would depend on the fraction of patients developing drug resistance or 

other adverse outcomes as a result of treatment interruption. Hence, we decided 

to use values between 0.65 and 0.80 and examine the sensitivity of our results to 

this variation.

We choose T  =  24 to reflect a time horizon of 2 years which is quite natural 

for resource-limited setting. Thus each period can be thought of as equivalent 

to a month. Use of discounting in health economics is not free of controversy
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Table 2.1: Quality of Life estimates

Parameter Tengs and Lin (2002) Holtgrave and Pinker­

ton (1997)

Jelsma et al. (2005); 

Cleary et al. (2006)

Values chosen

Si 0.93 (Asymptomatic 

HIV infection)

0.94 (Asymptomatic 

HIV infection)

0.85 (ART >12 months) 0.90

S2 0.81 (Symptomatic HIV 

infection)

No appropriate estimate No appropriate estimate 0.65-0.80

S3 0.81 (Symptomatic HIV 

infection)

0.70-0.80 (200 <CD4 < 

499)

0.71 (ART 0-3 months) 0.75

S4 0.60-0.70 (CD4 < 200 or 

Clinical AIDS)

0.60-0.65 (CD4 < 200 or 

Clinical AIDS)

0.71 (HIV+; no ART) 0.65
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(Krahn and Gafni, 1993). We follow the conventional approach (Shepard and 

Thompson, 1979; Drummond et al., 1980; Drummond, 1980) and set discount 

rate 8  = 0.99. However, our results are not sensitive to the actual choice of the 

discount rate.We model supply as a three-point distribution with support over 

the set {0,6,12}. We consider symmetric probability distributions of the form 

Pr (z — 0) = P r (z — 12) =  p and Pr (z =  6) — 1 — 2p. The coefficient of variation 

for this supply distribution is given by C.V. =  y/2p. Using this form of the supply 

distribution allow us to change the variance of the distribution without changing 

the mean. Also since the coefficient of variation is independent of the mean, 

our results do not depend on the absolute value of the mean. We consider three 

versions of the safety-stock policy depending on the level of safety-stock a in 

(2.10): a =  1, a = 2 and a = 3.

2.8.2 R esu lts

The performance of each heuristic is evaluated using the formulation in (2.7). 

This captures the increase in QALY score over the baseline of no treatment. 

Then the performance each heuristic relative to the optimal enrollment policy is 

calculated as: % gap =  • Figure 2.1 shows the % gap plotted

as a function of the coefficient of variation of the supply distribution.

First, the behavior of the performance gap is different for values of S2 greater 

than S4 and less than s4. For higher values of s2, the gap decreases with un­

certainty. The maximal enrollment policy gives the best performance, but the 

performance gap is overall higher, for lower values of s2, performance for all the 

heuristics increases as supply uncertainty increases. In other words, the value 

of using the optimal policy increases with supply uncertainty. Second, compari­

son among the heuristics reveals that maximal enrollment policy performs worse
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Figure 2.1: Performance of heuristics as a function of the coefficient of variation 

in the supply distribution

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

than the safety-stock policy for a large range of the supply uncertainty. Third, the 

choice of the actual safety-stock factor between a = 1,2,3 does not substantially 

impact the performance of the safety-stock policy.

Next we examine the best performance across all the heuristics as a function of 

the supply uncertainty. We find that heuristics perform best when s2 is lower than 

s4 and the supply uncertainty is low. In all other cases, even the best performance 

heuristics performs much worse compared to the optimal enrollment policy.

Next we examine the sensitivity of our results with respect to the parameter 

S'2, which is the average QOL score of patients with interrupted treatment. A 

lower value of S2 indicates that the problem of treatment interruption is more 

severe. Figure 2.2 plots the minimum % gap across all heuristics as a function 

of the coefficient of variation for different values of s2. We find that heuristics 

perform reasonably well as s2 increases. However for lower values of s2 even the 

choice of best among all the heuristics considered here yields large performance 

gap with respect to the optimal enrollment policy.

Table 2.2 shows the heuristic that gives the minimum % gap for the above 

values of s2 and the coefficient of variation. We find that which heuristic performs 

the best depends on the value of s2 as well as on the extent of supply uncertainty.

2.9 Conclusion and future research

In this essay, we study a clinic’s problem of optimally allocating scarce and unre­

liable supply of antiretroviral drugs between new and current patients when con­

tinuity of treatment for previously treated patients is essential. We use dynamic 

programming to derive the optimal policy of the clinic with the objective of maxi­

mizing the total discounted quality adjusted life years of its patients. Our analysis
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Table 2.2: Heuristic with the best performance for different values of C.V. and s2. 

ME denotes Maximal Enrollment Policy and SS (a) denotes Safety-stock Policy 

with a stock of “a” months_____________________________

C.V. s2 =  0.60 s2 =  0.70 s2 =  0.80

0.00 All All All

0.32 SS (2) ME ME

0.45 SS (2) ME ME

0.55 SS (3) ME ME

0.63 SS (3) ME ME

0.71 SS (3) ME ME

0.77 SS (3) ME ME

0.84 SS (3) ME ME

0.89 SS (3) ME ME

0.95 SS (3) All ME

1.00 All All All
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0.00 0.20 0.40 C.V. 0.60 0.80 1.00

—4 - s 2  « 0.8 - « - s 2 “ 0.7 -* -s2 = 0 .6

Figure 2.2: Minimum gap across all heuristics as a function of the coefficient of 

variation in the supply distribution

shows that the optimal policy under certain conditions results in prioritization of 

current patients, an accepted standard of care. But it also creates the possibility 

of restricting access to treatment for new patients. In our numerical illustrations 

the optimal enrollment policy (with enforced prioritization of current patients) 

performs substantially better than enrollment heuristics followed in practice for 

a wide range of parameter values. We find that supply uncertainty can greatly 

exacerbate the suboptimality gap of these heuristics. However, as mentioned ear­

lier, our model is a simplified representation of the resource-constrained context 

which abstracts from various links between diagnosis, prevention and treatment. 

An explicit inclusion of these links would be required before the findings from 

this model could be used in practical settings.

Our work can be extended in several different directions. In the context 

of rationing of HAART, the demand model could be made more realistic, at
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the expense of tractability, by considering attributes of patients other than the 

treatment status, such as their social status. Another extension would be the 

empirical determination of the actual rationing policies followed by clinics and 

the impact of supply uncertainty on these policies. We are currently in the 

process of preparing this, including attempting a limited empirical validation of 

the model proposed here.

2.10 Proofs

R esource-constrained condition: In our model described in (2.7), we assumed 

that yt)U >  Wt Vi. Since yt)n and Wt are both random variables, this is true if 

certain restrictions are placed on the supply distributions <f>t (•). Here, we derive 

one such restriction in the form of an upper bound on the support of (•). 

Consider the finite horizon problem with initial conditions y T ,n  and I t  before the 

shipment in period T  is received. Then yr,n >  W t  if zr  < VT,n — It-  Suppose 

this is true. Then for period T  — 1 under any feasible solution X t , u  and x t , c] 

V T - l,n =  (VT,n -  X T ,n) ( 0 2  +  « )  and W T- 1 =  W T -  X T ,n ~  X T ,c +  ZT - l -  Now

V T - \ ,n  >  W t  < = >

(:VT,n — %T,n) (0 2  +  « )  >  W t  ~  ^ T ,n  ~  x T,c +  %T- 1

Z T - l  <  VT,n ( 0 2  + a) -  ( 0 2  +  a - 1 )  x T,n +  x T,c -  WT (2.11)

Since (2.11) has to be true for all feasible X T ,n , x t ,c and 0 2  + Oi — 1 > 0 we 

substitute x t ,c = 0  and X T,n  =  W t  to obtain a lower bound on RHS. Thus (2.11) 

is satisfied for all feasible XT,n, x t ,c if ( 0 2  + a) z t  + z t - i  <  ( 0 2  +  ct) (VT,n — I t ) -  

Continuing this inductively, we find that a sufficient condition to ensure yt,n > Wt
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Vt is given by
T

(02 + a y  zu{ <  (J32 + a)T (yT,n -  IT) Vt (2.12)
i—t

where z f  is the upper bound on the support of Zi. A less tight bound is obtained 

by replacing each z ]{  by max zV in (2.12) to obtain
t < i < T

u ^  {02 + a) (jjT ,n  ~ It) ^  ’  ̂ (  (&+«)) w ,n i o\max z \  < -— _rp ' —!— —  = ----- t----------------- r-------Vt (2.13)
t< i< T  1 X ^T  ( f a  4 - n ,Y  ( l  i \

{P2 ^  J Vh+e.?’̂ )

Now since (2.13) has to be satisfied Vt, we substitute t =  1 to obtain

m ax
1 < i < T

Note that for T  —► oo, RHS of (2.14) -> (yr,n -  It ) ( l  -  (p2+a))  an(l  max °P' 

erator in the LHS has to be replaced by sup. Thus the equivalent condition for 

infinite horizon problem is

sup zV < {yT,n -  IT) ( l -  1 (2.15)
i<i<r \  {P2 +  c t )J

While analyzing the infinite horizon problem in Section 11, we assume that (2.15)

is satisfied.

P roof o f Proposition  7:

(i) We use induction to prove this. Let

«5t ~  { {pCt,ni X t ,c )  ■ 3't,n T  X t,C — 0 ^  Xf^c ^  Vt,ci 0 ^  X t , n \

Note that S t is a convex set. Using this notation, the recursive equation for t =  1 

is given by:

Vi{W uVx,e) =  max scx hc + snx hn -  kcyi,c(xitn,XliC)€Sl
=  sc min {yijC, W \} +  sn [Wi -  yi,c}+ ~  K y \ ,c
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Thus V\ (W i,y ijC) is jointly concave in its arguments. Now assume that the result 

holds for t — 1. Let

v , ( v U ,w ; )  =  / , « * < „ )  i — 1 , 2

and V, ( y l ,  W?) =  / « ( < „ < „ )

where H") =  A (yj^, W,1) + ( 1  -  A) ( y ^ ,  Wt2). Also define ( 4 c,x£„) -  

A (.r,1,,. x,‘„) +  (1 -  A) (x-J,,i7 „). Since 5 t is a convex set x j  j  €  S,. Using

this notation

AVJ (4 ,c, W?) +  (1 -  A) 14 ( y l ,  W?) 

=  Ah  (xl c, x lt r)  +  (1 -  A) ht {x\c, x 2t n) 

+  SE [XVt-i (P (ylc +  x t,n) , W] -  x \ c -  x \ n)} 

+  6 E  [(1 -  A) 14-! (P (yt,c + 4 c ) , w t ~  Xt,c ~  Xt,n)} 

< ht ( 4 c  Xt,n) + SE [Vt-! (P (4 c  +  Xt,n) , Wt ~  x t,c ~  4 J ]

=  f t  ( 4 C, 4 n) < f t  (4 c , X*,n) = Vt ( v l ,  W?)

Thus 14 (•) is jointly concave in its arguments.

(ii) From (i), 14—1 is jointly concave in its arguments for all realiations of

Zt~\. Thus, 14-i is also jointly concave in (xtjC, x t,n) since 144-1 and yt-\,c are

linear transformations of (xttC, x t,n) as seen from (2.3) for all realizations of Zt- 1- 

Since the expectation operator preserves concavity, E  [14—l] is also jointly concave 

in (xt,c,xt!n)- ht (xt>C) Xt,n) is linear and hence jointly concave in its arguments. 

Since f t  (xtjC, x t,n) is a sum of two concave functions, it is also jointly concave in

{Xt,ci XtjTi).

(iii) We show that our problem can be reformulated in the form described in 

Karmarkar (1981). Introduce slack variables p], pf, p\ in the constraints in (2.6),
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and ut;C = ytfC +  %Xt,n- Then define

y t=

' Wt ' _
’  h  ' - 1 - 1 0 0 0

yt,c
Xt,c

Ulc 0
Pi

0 0 0
Xt,n

Vt,n ulc ;A =
0 - 1 0 0 0

;* t = pi =

Ut,c
pi

0 - 1 0 - 1 0 0

V t,n

.  pI .

0 0 - 1 0 - 1 0

.  w t .
0 - 1 - 1 0 0 -1

u  (ut, Z t - i )

and a transition function u> such that

It ~  Zt-l

(3\u\c 

(fo + a) m?,c

Plul,c 

(/?2 +  a) u jc 

It — Z t - l

With these definitions, the problem formulation (2.7) becomes 

Vt ('Wt , V t,c) =  max j ht (xt,c, x t,n) +  S E  \Vt- i  (Wt-i,

s.t.
ut = Axt + yt

yt-i = u  (ut, z t- i )

This formulation is equivalent to the formulation (MP) in Karmarkar (1981) and 

hence Proposition 8 applies completing the result.

Proof o f  Proposition 8 : First consider the case when s3 — s4 > Si — s2- For 

t = 1, the optimal solution is trivial. Thus

E Z1 [Vi (Wi,y\)} — s2yilC + ( s 3 — S4) {h  +  E  [^i]) (2.16)
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Then the objective function for t =  2 becomes:

h  (^2,0 x 2,n) =  ((si -  S2) -  5 (s3 -  s4)) X2,c + (s3 -  3 4 )

+  5 {s2fl2 — (33 — S4)) +  (33 — S4) E  [zi] (2.17)

Since (2.17) is linear in its arguments, comparing the coefficients gives the desired 

result.

Now consider the case of Si — s2 >  s3 — s4. Again the optimal policy for t =  1 

is straightforward. Thus evaluating E  [Vi (A, yi,c)} and adding the single period 

reward function, the objective function for t =  2 becomes

h  (x 2,c x 2,») =  (si -  s2) x 2fc + (s3 -  si) x 2>n 

(  y i -h

(si -  (s3 -  s4)) yi,c +  (s3 -  s4) Ix -  ((si -  s2) -  (s3 -  s4)) J  $1 {h)

\

dz\

Since this is a constrained optimization problem with concave objective func­

tion and linear constraints, KKT conditions are both necessary and sufficient for 

optimality. Let Ai and A2 be the lagrangean multipliers associated with the con­

straints in (2.7). Then forming the largrangean in the usual manner and taking 

the first order derivatives

= (si -  s2) -  5(s3 -  s4) -  M -  A2 =  0 (2.18)
C'%21c

d L 2
= («3 -  S4) +  8  ( -  (s3 -  s4) -  ((si -  s2) -  (s3 -  s4)) $1 (yi -  Ji))

dXi>r,

+  8 2  ((si — (s3 — s4)) — ((si — 52) — (s3 — 54))) <3>i (yi — / 1) — A2 =  0 (2.19)

Then depending on which of the constraints are binding or slack we get following 

cases:
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C ase I: A2 >  0; X\ =  0

x *2 c +  x 2,n =  ^ 2  and I\ =  0. Substituting A2 > 0; A4 =  0 and equating
-34 (1 -< ?«))-( 1 -S/32 ) («1 -
<5ft((si-s2)-(s3-s4))(2.18) and (2.19) we obtain 4>(»I) = =  *i- Thus

x% = ** (fci) Pim,c an(j x * _  iy 2 _  *1 (fcd  For this to be feasible,

we need the following conditions to be satisfied: (i) TjT1 (k\) — A 2/2,c >  0 (ii)

P2W 2 + fl\V2,c >  $ 11 (A) and (iii) P2 W2 + ( A  — A ) 2/ 2 ,c < $ 11 (A)-

Case II: Ai > 0; A2 =  0

x 2,c= 2/2,c- Substituting in (2.19) we obtain

if, /„  * r * \  _  S3 -  S 4  (1 +  8 ( A  +  a ) )  +  <5 ( s i  -  ( S 3  -  S4 )  (1 +  A ) )  _  u
 ((S1 _  S2) -  (S3 -  S1)) ( 1 + m )

Simplifying and substituting the value of x ^ ,  we get x \  n =  (fci)+^-^i+/?i)y2,e ^

Again for this to be feasible, we need the following conditions to be satisfied: (i)

( 1  +  A )  2/2,c  —  f ' A  5:  $ 1 1 ( A )  ( i i )  P2W2 +  ( A  —  A )  2/2,c  >  $ 1 1 ( A ) -  

Case III: Ai >  0; A2 > 0

x 2,c— 2/2,c and x l  n — W2 — 2/2,c and. Substituting Ai >  0; A2 > 0 in (2.18) and 

(2.19) we get A ^ 2  +  (A — A ) 2/2,e >  ^i"1 (^i)- This is feasible if (i) W2 > 2/2,c-

Case IV : Ai > 0; A2 > 0

This is not possible since (s4 — s2) — 5 (s3 — s4) > 0.

Thus combining all the three cases, we get the desired form of the optimal policy, 

where 77 and 9 are defined appropriately.

P roof o f Proposition 9: We shall use induction to prove this result. First 

consider 2 = 1 .  Clearly since (Cl) states that Si — s2 >  S3 — s4, the optimal 

policy has the desired form since and Jfh- >  0. Now consider period

t. The partial derivatives of the maximand are given by:

dVt-r dVt^
d ft  = ( s3 - sQ + 5 E

d x ttn A dyt-i,c dW tt-i
(2 .20)
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dft
dx tyC

(«i — s2) 4- 8 E
dVt-1
dWtt- 1

Now suppose that the following two results hold for t — 1 :

W 4- ' 1 < < * - * )

(si -  s2) -  (s3 -  4 )

E

E

dW t-i
dVt-i

d y t - i , c .
<

802

(2 .21)

(2.22)

(2.23)

These together imply that >  0 and and hence the optimal policy

has desired form in period t. In order to carry forward the induction we need to 

show that (2.22) and (2.23) hold for t. Using the structure of the optimal policy 

in period t, we can write the following:

(s i ~  s2) Wt +  s2yt,c + 8 E  [Vt-1 (zt- i,  Piyt,c) \ ;

if zt-\ < yt,c -  h

Vt (Wt, yt,c) =

S\yt,c +  (s3 -  S4) (Wt -  yt,c) 

+5E \Vt-i ( z t- i ,0 2Wt +  (A -  fo) Vt,c) ] ; 

if yt,c -  I t < zt- i  < yt,c -  h  +  9t
(2.24)

si yt,c +  (S3 — s |)  6 t 

+ 8 E  [Vt- 1 (Wt — yt,c — @t + zt-i, 0Wt,c + 0 2 6 t) ] ;

if zt-i > yt,c — h  +

Using the fact that Vt (•) is jointly concave in its arguments we can see that

E avt
awt < (si — s2) and E ayL

dyt,, < Si —(«3 — S ^ + J  (0i — 02) E dV t-1  
a-yt-1,, Clearly

(2.22) holds for t. Now to prove the remaining, consider

E
dVt
dyt,c

< S\ — (s3 — S4) +  5 (0i — 02) E
dVt-i

<  S i  — (S3 — S4) +  6  (0 1  — 0 2)

dyt-i,c]
(si -  s2) -  (s3 -  4 )

802
(si -  (s3 -  4 ) )  0 1  -  ( 0 1  -  0 2 ) S2 

02
(2.25)
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where we have used (2.23). Now rewriting (C2) we obtain

S2 (1 — d (Pi  — P 2 ) )  <  ( s i  — S3 ) (1 — <5/?i) +  S4 (1 +  S (P 2 +  ot — P i ) )

=  («i -  s3) (1 -  6Pi) + s l - s \  (SPi)

< (si -  s3) (1 -  5Pi) +  5̂ +1 -  s\ (5Pi) (2.26)

where we have used the definition of s\ and that it is increasing in t if

(P2 + a  — Pi) > 0. Now substituting (2.26) in (2.25) we obtain the desired result.

P ro o f  o f P ro p o sitio n  10: 9t is a solution to the equation =  (s3 — s£) +

5E P
dV t .dVt-i________

dyt-~ i , c  dWt-x =  0, where the expectation is with respect to the distribu­

tion of Zt-i  i.e., Ft- 1 or G t-1. First, using the implicit function theorem it is clear
ovt- 1 m -i

that -JfE. =oyt,c
&vt. - E 9yt-i,c 9Wt-i

9 T?eetE
9vt- 1 avt_x 

P » W - l , c  swt-i
-1 since d W t- 1 _  d w t-  

9yt,c 90t and dyt-
dyt,,

9yt-i,c
d0t

This proves the part (i). Now for part (ii) is a non-increasing function of

Wt- 1 and hence of Zt~ 1. Hence, — is a non-decreasing function of Zt-i- 

Also using Pi — p 2 from (2.24), we have

dVt-i 
dyt-

s2 +  SPiE dVt-2
dyt-2,1 i Zt— 1 ^  yt-l,c It— 1

l,c si -  (s3 -  4 ) ;  zt- i  > Vt-i,c ~  h - 1

Now ^ is decreasing in yt~i,c and hence increasing in zt~ 1 for a given yt-i,c-

by first order stochastic dominance. Thisd V t - iHence E f oWt- 1 

implies that

>  E g

> I K
9xt,n

dVt-x
d W t- 1

G
and hence dt (F ) > 6 t (G). This proves the result.

P ro o f  o f P ro p o s itio n  11 : Define a borel measurable function r  : R2 —> R2 that 

chooses (xltc, x tjn) G S t given (Wt,yt,c)- Let V denote the space of continuous 

real-valued functions satisfying the following boundedness property:

\\v WjOIIsup , , .
w,y (max { W ,D \

where D is a positive constant and define the distance function

\V ( W ,y ) - V '( W ,y ) \ \

<  OO (2.27)

(V, V') =  sup {-
W ,y  I max {W, D}

; V, V' G V
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Then (V, q) is a Banach space (Miller, 1974). Define g (•) as a vector valued func­

tion defining the transitions in (2.1) and (2.3). Since, r is a measurable function, 

g(-) is a transition function (Theorem 8.9; Stokey et al., 1989). Moreover, since 

g(-) is continuous, it possesses the Feller Property (Stokey et al., 1989; p.237). 

Hence the operator

(HrV) (W, y) = h ( r  (W, y)) +  5E [V (g (IT, y))}

maps into a continuous function. To show that HrV  satisfies the boundedness 

property in (2.27) note that

(.HrV ) ( W ,y ) = h( r ( W, y ) )  + 8 E[V(g(W, y) ) }  

<  scW  +  SE [V (W  -  x c -  xn + z, f3 (y + a;n))]

<  scW  + 5 V (W  + E[ z ] , p{ y  + x n))

< scW +  8 M m a x { W  + E[ z \ , D}  (2.28)

where the last inequality is due to the boundedness condition (2.27) and the 

inequality before that is because V  (W, y) is concave and increasing in W.  Clearly,

(2.28) implies that (HrV) (W, y) is bounded since E  [z] is bounded. Thus HrV  : 

V —» V. Hence Theorem 9.6 and 9.2 from Stokey et al. (1989) prove the result.

P ro o f  o f  P ro p o s itio n  12: Using results (i) and (ii) of Proposition 9 in (2.20), 

we obtain:

y, > (^3 -  sty + 6  ( S2/?2 (8f3i)u — (s\ — S2)
9X^  \  û O

t - 1

> (S3 — S4) +  S2 {8(3?)u — 8 (s\ — S2)
1

t - 1

=  («2 -  S4) (5(32)u -  (s2 - S 3 ) - 5  (si -  s2)
u=0

Now two cases are possible depending on the relative values of S2 and s4. If 

s2 > s4, then (s2 — s4) > s 2 — s4 and hence condition (C3) in the
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*-1
h y p o th esis  im p lie s  > 0  V i < T. If s2 <  s 4 , th en  (s2 — s4) Y2 (S/32)u ^GKt.n u=0

T - \
(s2 — s4) Y2 (S/32)uand hence condition (C4) in the hypothesis implies ®

u—0
V t < T.

2.11 Appendix: A conceptual m odel of H IV treatm ent 

scale-up in resource-constrained setting

Scaling up highly active antiretroviral therapy (HAART) for HIV+ patients in 

resource-constrained settings such as Sub-Saharan Africa has received enormous 

attention in the recent years. The number of patients receiving HAART in these 

regions has barely reached 1 million patients despite growing attention from the 

international donor community (PEPFAR , GFATM , CHAI , etc.) and WHO’s 

ambitious 3 by 5”program which aimed to get 3 million people on treatment by 

2005 (WHO, 2005). Not discouraged by this failure, the WHO is now aiming at 

universal coverage for all eligible patients by 2010 (WHO, 2007).

IOM (2005) provides a very detailed discussion of the ethical, clinical and 

social principles underlying scale-up efforts and elements of an integrated man­

agement framework necessary for long-term success of treatment programs. The 

report emphasizes the importance of (i) sustainability of response, (ii) integration 

of treatment and prevention, (iii) comprehensive supporting infrastructure, and

(iv) continuous monitoring and evaluation.

While there is a growing body of research on H A A R T  scale-up in resource- 

constrained settings, the level of integration between different streams is low. 

T h e o b jec tiv e  o f th is  essay  is to  provide a  u n ify in g  fram ew ork for H IV  /  A ID S  

management in resource-constrained settings. Using a patient flow model as
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the underlying framework we describe various potential links between treatment, 

prevention and diagnosis. It also provides a platform to discuss issues related to 

allocation of resources between these three activities. We also highlight the miss­

ing links in the current literature and suggest opportunities for future research. 

Finally, we briefly elaborate on one such potential research idea.

2.11.1 Conceptual framework

Figure 2.3 describes our conceptual model. It is a patient flow model, where 

rectangular boxes represent different patient segments, stars represent different 

resources, simple arrows represent patient flows and block arrows represent usage 

of resources in the program. The fundamental premise of the model is that 

HAART can not be analyzed in isolation; it is essential to highlight its interactions 

with other portions of the healthcare system (testing and prevention) through 

patient flows and shared resources. However, the model is not intended to display 

the minutest details. For example each patient segment is further divided into 

sub-categories based on their health status and socio-economic status. Further 

use of this model to answer specific research questions mentioned later in this 

chapter would require taking such sub-categories into account.

2.11.2 E xisting Literature

In this section, we use our conceptual model to review the literature relevant to 

HAART scale up. We focus on links in the model that are particularly important 

to resource-constrained settings. We discuss evidence (or lack of it) for these links 

and wherever appropriate compare the situation in resource-constrained settings 

with that in developed countries.
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Figure 2.3: Conceptual model of HAART scale-up 

Treatm ent R ationing

A particularly important issue related to initiation of therapy in resource-constrained 

setting is that of treatment rationing: given the anticipated gap between available 

supply of drugs and demand (WHO, 2005), the key question is which patients 

should be prioritized for treatment. Many countries have adopted national level 

treatment rationing policies based on non-clinical criteria (Bennet and Chanf- 

reau, 2005). Typical factors used for rationing include adherence to treatment, 

social and economic benefits and financial factors in addition to clinical charac­

teristics such as CD4 counts and disease staging. A detailed discussion of ethical 

principles involved in creating rationing guidelines is available in Macklin (2004). 

Based on these ethical principles, Rosen et al. (2005) and McGough et al. (2005) 

provide various q u a lita tiv e  m echanism s for se lec tin g  n ew  p a tien ts  from different 

patient segments. However, this discussion fails to recognize that HAART is a 

life-long treatment and selecting patients in the present has resource implications
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for the future, especially if resource availability in the future is unknown. We 

elaborate on this further in a later section.

Im pact o f treatm ent on VCT uptake

Impact of improved treatment access on increased testing is especially significant 

in resource-constrained settings. Success stories of drastic improvements in health 

status of treated patients encourage more people to come forward for testing. 

While the importance of this link is widely recognized, the evidence is still scant. 

Experience with community roll-out of treatment in Haiti showed that uptake 

of voluntary counseling and testing (VCT) increased by 300% (WHO, 2003a). 

Similarly, in Khayelitsha, South Africa, the uptake of VCT increased 12 fold after 

treatment introduction (WHO, 2003b). Conceivably, expansion of VCT programs 

provides healthcare workers with new gateway for spreading prevention messages 

promoting less risky behaviors and reducing incidence of new HIV cases. However, 

there are very few studies that demonstrate this link between VCT uptake and 

improved prevention (Roth et al., 2001).

Im pact o f treatm ent on risky behavior

Similarly impact of HAART on the behavior of patients undergoing treatment is 

not unambiguous. Many studies in developed countries have found that risky be­

havior in treated patients increased as a result of improved functional health and 

the belief that HIV is not a life threatening infection (Katz et al., 2002; Dilley 

et al., 1998). However, these studies were focused on gay communities. Simi­

lar studies of heterosexual communities have shown mixed findings (Wilson and 

Minkoff, 2001; Flaks et al, 2003; van der Straten, 2000). In resource-constrained 

settings, recent evidence seems to point that HAART programs result in more
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preventive behavior through counseling and raising awareness among discordant 

couples (Bunnell et al., 2006). However, other studies have only found no in­

crease in risky behavior as a result of treatment (Moatti et al., 2003). Clearly, 

more studies are required before generalizing these findings and basing policy 

recommendations on them.

Im pact o f treatm ent on spread o f H IV

A direct benefit of successful treatment regimen is the reduced viral load in the 

patients (Pereira et al., 1999) which can reduce infectivity and hence the spread 

of HIV, even if their risky behavior was unchanged (Hart et al., 1999; Musicco et 

al., 1994). However studies based in sub-Saharan Africa have been less optimistic. 

Using a stochastic simulation model and HIV transmission data from Uganda, 

Gray et al. (2003) found that HAART alone would not substantially reduce the 

prevalence of HIV infection in the population over the next 20 years. Auvert 

et al. (2004) reach to a similar conclusion regarding the impact of HAART on 

incidence of new HIV infections in South Africa.

Interdependence o f treatm ent and prevention

The results from these studies have been incorporated to understand the epi­

demiological impact of HAART programs. Blower et al. (2005) and Blower et al. 

(2003) use mathematical models to predict the impact of HAART rollout on the 

evolution of drug-resistant HIV epidemics in resource-constrained settings and on 

number of new infections averted. They model three main effects of HAART on 

the epidemiology of the disease: (i) reduced infectivity due to reduced viral load 

of treated patients (ii) changed behavior as a result of improved health status 

(increase /  decrease in risky behavior) (iii) acquired drug resistance due to long-
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term exposure to treatment and transmitted drug resistance due to risky behav­

ior. Salomon et al. (2005) use an epidemiological model to show that integration 

of treatment and prevention responses is highly beneficial in resource-constrained 

settings as treatment makes prevention efforts more effective and prevention ef­

forts make treatment more affordable. However, as discussed later these models 

do not adequately incorporate the characteristics of resource constraints in these 

settings.

Characterizing resource-constrained settings

A growing stream of operational research literature focuses on detailed character­

ization of the organizational challenges associated with rapid HAART scale-up. 

Landman et al. (2006) surveyed evaluated the capacity of 19 health care facilities 

in Tanzania to deliver HAART and found need for substantial improvement in 

several areas including staff training in HAART and laboratory facilities. Wester 

et al. (2005) found the lack of space and well-trained staff as the key bottlenecks 

during the expansion of HAART at a single clinic in Botswana. During a sim­

ilar study of community based HAART program in South Africa, Bekker et al. 

(2003) found significantly increased staffing needs during the recruitment of new 

patients on HAART.

Another stream of this literature studies the impact of HAART programs 

on patient outcomes. Coetzee et al. (2004) found that standard approaches to 

patient preparation and adherence counseling resulted in high patient retention, 

improved viral load control and patient survival. In contrast, in a Malawian study 

(Oosterhout et al., 2005) several patients were lost to follow-up and unreliable 

drug supply and financial constraints were found to be the main causes of poor 

adherence. Oyugi et al. (2007) found similar causes for treatment interruptions
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in a study in Uganda and also found that such interruptions were significantly 

related to development of drug resistance.

Thus the main contribution of this literature has been to establish the fea­

sibility of HAART in resource-constrained settings and highlighting operational 

issues that can impact patient adherence and treatment outcomes. However, two 

important aspects have not received adequate attention. First, an important 

unanswered question in this context is which model of care is the most appro­

priate. The only study that compared different models of HAART provision at 

five leading centers in the Western Cape province of South Africa did not find 

significant difference in patient outcomes (Pienaar et al., 2006). Second, due to 

funding by external agencies, there is a strong link between future availability 

of resources and current performance of HAART programs. Consequently, while 

making resource allocation decisions, the healthcare facilities need to consider the 

current direct impact of their HAART programs as well as program sustainability 

through future availability of resources. However, currently there are no models 

that can support the implementing agencies in making such decisions.

2.11.3 A genda for future research

Previous section points to important gaps in current literature on HAART scale 

up in resource-constrained settings. In this section, we present three important 

building blocks of HAART scale up in resource-constrained settings and argue 

that the main shortcoming of the current literature is that it does not combine 

these building blocks; an attribute that is essential to designing more relevant 

research questions.

1. Dynamics of HAART: HAART is life-long treatment and enrolled patients 

need to be treated without interruption for the rest of their life. This implies
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that current enrollment decisions have implications on the sustainability of 

treatment in the future.

2. Interdependence of prevention, testing and treatment: Discussion in the 

previous section has highlighted the importance of these interdependen­

cies. Any program that focuses on one aspect and fails to recognize the 

connection with other aspects will inevitably only achieve local optimum.

3. Characterization of resource availability: Operational research presents a 

complex picture of the resource availability in this context. In addition to 

aggregate shortage, availability of resources is also highly variable owing 

to multilateral coordination involved in garnering resources and a weak 

infrastructure involved in delivering resources. Moreover, future availability 

of resources might often depend on the current performance of programs. 

Next, we present an illustrative example of potential research projects which 

explicitly incorporate these building blocks.

Dynam ic rationing o f treatm ent at the clinic level

A majority of the current discussion on treatment rationing reviewed above is 

qualitative and focuses on which patient segments to select for treatment based on 

a combination of socio-economic and clinical criteria. The two main deficiencies 

of this approach are: (i) it is implicitly assumed that patients, once enrolled, are 

guaranteed to receive treatment in the future (ii) it primarily focuses on national 

level policies with the hope that these policies will eventually percolate down to 

the clinic level.

Studies of HAART programs in resource-constrained settings provide evidence 

that the first assumption is not true. Oyugi et al. (2007) and Oosterhout et al.
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(2005) provide systematic evidence of treatment interruptions caused by drug 

stock outs resulting in drug resistance and treatment failure in Uganda and 

Malawi. The primary reason for these stock outs is a combination of supply 

and demand side issues. On the supply side, there is variability in the quantity 

of drugs delivered to clinics due to variability in the funding at the national level 

and deficiencies in the infrastructure available to deliver these drugs. On the 

demand side, there is inadequate understanding of how the future demand for 

drugs is shaped by the current enrollment decisions due to the chronic nature of 

HIV. As a result, the national level policies fail to provide concrete guidelines to 

clinics on how to plan for new enrollments in order to provide them and previous 

enrollees a sustainable treatment in the future.

A quantitative approach that incorporates all the above characteristics of the 

resource-constrained settings is required to provide this decision support to the 

clinics. Figure 2.4 provides a schematic representation of the proposed approach. 

Available resources need to be allocated between new (treatment naive) patients 

and current (previously enrolled) patients. Note that both the patient pools are 

not homogenous but consist of patients with varying health status as character­

ized by CD4 count or disease stage. Initiating new patients on treatment has two 

consequences: (i) immediate improvement in the health status of these patients 

and (ii) increased likelihood of future deterioration in health status of patients 

due to shortage of drugs owing to supply variability. Thus deciding the number 

of new enrollments in the current period requires quantitatively trading off this 

immediate improvement with a possible future deterioration.

Calculating the second component -  future deterioration in health status due 

to treatment interruption -  is tricky and requires further ex p o sitio n . The d eterio­

ration in health status could be due to direct causes such as development of drug
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Figure 2.4: Treatment rationing at the clinic level

resistance and viral rebound resulting in therapy failure. A detailed model needs 

to capture that the likelihood of these consequences could vary depending on the 

current health status of patients, history of adverse events and the duration of 

the current treatment interruption. Moreover, the model also needs to capture 

the indirect causes for health deterioration such as reduced adherence due to a 

loss of trust in treatment and health care system in general.

In addition to these consequences on the health of patients under treatment, 

interruptions can have negative impact on other aspects of the system described 

in Figure 1. Interruptions could make untreated patients less optimistic about 

treatment programs resulting in lower testing rates, which in turn could nega­

tively impact the effectiveness of prevention programs.

Another important aspect evident from the schematic representation is the 

fact that current enrollment decisions also influence future availability of resources 

through program outcomes. In some cases, aggressively increasing the number of
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new enrollments might have the negative impact of increasing the likelihood of 

future treatment interruptions. However, at the same time, it might also result 

in more resources being made available to the clinic for future periods.

Apart from this normative model, there is an urgent need to understand how 

clinics actually ration treatment among different patient segments and between 

current and new patients. Empirical research in other contexts has shown that 

clinicians are guided more by equity than by efficiency in their rationing deci­

sions (Ubel et al., 2000; Perneger et al., 2002; Hurst et al., 2005). It would be 

interesting to test the hypotheses coming out of this literature in the context of 

resource-constrained settings and the chronic nature of HAART.

Using this illustrative example, we find that there are ample opportunities for 

cross-functional research which can considerably improve our understanding of 

the situation and help us to design better informed policy recommendations.
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C H A P T E R  3

O rganizational determ inants o f perform ance in 

quality  im provem ent collaboratives

3.1 Introduction

Over the past decade, there has been a growing consensus that serious quality 

problems exist in the delivery of health care in the U.S. due to an increase in the 

prevalence of chronic conditions among patients and a poorly organized delivery 

system that is designed to deliver episodic care. (Chassin, 1996; Chassin and 

Galvin, 1998; IOM, 2001). This necessitates coordination among different areas 

of the health care delivery system in order to ensure high quality of care over a 

long period. Many have advocated a systems approach to quality improvement 

(Blumenthal, 1996; Chassin and Galvin, 1998; Shortell et ah, 1998; Ferlie and 

Shortell, 2001; IOM, 2001; Berwick, 2002; Leape and Berwick, 2005).

Quality Improvement Collaboratives (QIC), an approach based on systems 

thinking, is arguably one of the most powerful tools available to the health care 

industry (Mittman, 2004). It has been adopted on a large scale by Health Re­

sources and Systems Administration (HRSA) in the U.S. and National Health 

Service (NHS) in the U.K. The QIC method involves bringing together a number 

of health care delivery organizations who are committed to improving a certain 

aspect of health care. Representative teams from these organizations learn from

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

experts about the practical approaches to quality improvement and share their 

own findings and experiences with each other to create a collaborative learning 

experience. This approach in conjunction with the Chronic Care Model (CCM) 

has been widely employed to improve the quality of care for chronic conditions 

(Wagner et al., 2001).

However, there is limited rigorous evidence on the improvements achieved as 

a result of this approach (Mittman, 2004). One of the most rigorous evaluations 

of QIC in HIV care (Landon et al., 2004) did not find statistically significant 

improvement in the quality of processes and outcomes in the clinics that partici­

pated in the collaborative when compared with a set of matching clinics. These 

researchers have suggested that organizational factors might play an important 

role in predicting successful quality improvement. Other researchers have also 

commented on the variation in the performance of the organizations that take 

part in collaboratives (Ovretveit et al., 2002) which may be a result of the or­

ganizational culture and readiness to inculcate quality improvement philosophy 

(Plsek, 1997). However, there has been relatively little attention in the published 

literature to structural determinants of health care quality (Flood, 1994; Dudley 

et al., 2000; West, 2001).

In this chapter, we assess several organizational factors that we thought would 

be related to the performance of the health care delivery organizations participat­

ing in QICs. Specifically, we hypothesized that a supportive and open environ­

ment, organization’s focus on quality improvement, presence of multidisciplinary 

teams and measurement of progress towards quantifiable goals would be associ­

ated with successful quality improvement efforts.

Importance of multidisciplinary teams as effective means of improving current 

practices in an organization (Argote et al., 2001) and their usage in health care
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organizations (Horbar et al., 2001; Wagner et al., 1996) is well known. Thus we 

expect that the clinics that have multidisciplinary teams will perform better than 

those that do not have such teams. Similarly employees’ willingness to engage 

in trial and error experimentation and collaborative problem-solving depends on 

a supportive organizational and interpersonal climate (Edmondson et al., 2001; 

Sarin and McDermott, 2003; Edmondson, 1999). Various aspects of this climate 

include organization’s focus on quality improvement and psychological safety or 

a culture of openness in the organization. Hence we hypothesize that an open 

organizational culture, strong QI focus and presence of multidisciplinary teams 

will be associated with higher number of interventions. In the context of qual­

ity improvement collaboratives, reporting progress on targets is shown to keep 

teams focused on the collaborative objective and on the need for measurement, 

and helps them to learn the importance of objective assessment (Ovretveit et 

al., 2001). Hence we hypothesize that organizations that routinely measure their 

progress towards quantifiable goals will implement a higher number of interven­

tions. (Hypothesis 1)

Multifaceted, interconnected changes to the organization and functioning of 

practice are essential to ensure routine performance of critical tasks in a chronic 

care setting. A study of 41 collaboratives in diabetes care found that interven­

tions that tended to be complex and involved multiple areas of care (Rothman 

and Wagner, 2003). Since in chronic care, patients have repeated contacts with 

the health care system, possibly with different aspects of the system each time, 

it is very important to have excellent internal coordination between different ar­

eas of care giving within the organization. Clearly, presence of multidisciplinary 

tea m s and  an o p en  organ ization al cu ltu re can  fa c ilita te  d ia logu e b etw een  differ­

ent departments of the organization and pave the way for interventions which 

are more complex and span multiple areas of care. Hence we hypothesize that
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organizations with more open culture and multidisciplinary teams will undertake 

interventions of more cross-departmental nature. (Hypothesis 2)

Choosing interventions that can have large potential impact on the quality 

of care and choosing a large number of interventions is clearly not sufficient to 

guarantee overall implementation success. The chosen interventions need to be 

implemented in the right way across the organization to actually see the impact. 

Moreover, critical evaluation of interventions is necessary in order to see if the 

potential impact of the interventions is being realized or not. Also, interventions 

focusing on chronic care need to be multifaceted and span multiple departments 

of the organization in order for them to have significant impact. Hence we hy­

pothesize that controlling for the number of unique and repeated interventions 

and the mean importance of interventions, the overall clinic rating will be higher 

for those clinics that evaluated a higher percentage of interventions, had a multi­

disciplinary team and implemented interventions spanning multiple departments. 

(Hypothesis 3)

3 .2  M e t h o d s

3.2.1 C ontext

The data for this study was collected as a part of the EQHIV project (Landon et 

al., 2004) from HIV clinics funded by the Ryan White CARE Act. The EQHIV 

project evaluated a quality improvement collaborative (QIC) that was conducted 

by Institute of Healthcare Improvement (IHI) and in which 62 clinics participated 

from July 2000 to November 2001. Details of the IHI’s breakthrough collaborative 

process and the underlying conceptual framework of Chronic Care Model (CCM) 

are described elsewhere (IHI, 2003).
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3.2.2 Data

In this chapter, we used data collected in the EQHIV study (Landon et al., 2004; 

Marsden et al., 2006). These included information on the quality improvement 

interventions or initiatives attempted by the clinics participating in the collabora­

tive. Of the 62 clinics that participated in the collaborative, teams from 50 clinics 

submitted monthly Senior Leader Reports (SLRs) that contained information on 

the change initiatives attempted at the sites. Information about each initiative 

attempted was recorded using a standard data entry form. The coder classified 

each intervention in one or more of the six CCM categories namely Clinical In­

formation Systems, Delivery System Design, Decision Support, Self Management 

/  Adherence, Community Linkages and Organizational Leadership. Moreover, 

each intervention was also classified in to one or more target areas. These target 

areas could be areas of care such as screenings, immunization, women’s health, 

antiretroviral therapy or could be aspects of organization such as team building, 

chart initiatives, case management, staffing etc.

Additional characteristics that were coded included whether the initiative was 

evaluated by the clinic, what phase of implementation was the intervention in, 

how did it impact the physician and non-physician staff and what was the overall 

importance of the intervention for quality improvement effort. In addition to 

the coding at the individual intervention level, the coder was asked to rate the 

overall activity level at the clinic in terms of the overall likely impact of the whole 

package of changes being carried out.

The second dataset contains a survey of clinicians from two sets of clinics: 

one that participated in the collaborative and second set of identified control 

sites who did not participate in the collaborative. Before beginning the collabo­

rative, 337 clinicians were randomly sampled (up to 5 from each clinic) of whom
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300 completed the questionnaire. Analysis here focuses only on 104 clinicians 

from the intervention clinics. Survey questionnaires covered the structure, cul­

ture and organization of the clinics and their services with focus on the decision 

making environment in the clinic (leadership and staff attitudes towards qual­

ity improvement) and patient education efforts at the clinic. See Marsden et al.

(2006) for more details on the survey methodology. We found 42 sites that had 

matching data from both datasets.

Other demographic characteristics pertaining to the clinics such as organiza­

tion type (for example whether the clinic is a community based organization or a 

part of a larger multispecialty hospital), size (number of HIV patients), clinician 

staff mix (physicians vs. non-physicians) and region were also obtained from the 

EQHIV database.

3.2.3 M easures

3.2.3.1 Intervention choices

The monthly reports contained multiple aspects of the intervention choices made 

by the clinics during the course of the collaborative. The overall activity level 

in the clinic was captured by the number of unique interventions that were at­

tempted. Since each intervention could span multiple areas of care, we con­

structed a measure similar to standardized Herfindahl’s index to capture whether 

the clinic focused on a narrow aspect of care or took a more holistic perspective. 

This measure has a theoretical range of 0 to 1 where 1 implies that the clinic 

focused only one area of care, while 0 implies that the clinic focused on all areas 

of care equally. Thus, a low er score on this m easure implies interventions that 

are more cross-departmental. The other variables that could be important in 

explaining the implementation success included percentage of interventions that
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were evaluated by the clinics and average importance of the attempted interven­

tions for quality improvement.

3.2.3.2 C linic characteristics

We used two different types of variables to describe the organizational character­

istics of the clinics. First, we used the demographic variables of organization type 

(community based organization, county health center, health department, hos­

pital and university medical center), region (north, south, west, east) as control 

variables and whether the site was a specialty site or a general site. Number of 

HIV patients was used as a proxy for the size of the organization. A 0-1 dummy 

variable was used to describe whether the organization used multidisciplinary 

teams.

In order to capture the organizational culture of the clinics, we considered 

clinician’s responses to questions on the decision-making environment in the or­

ganization. These questions asked respondents about the leadership’s vision and 

support for improving quality of care and staff’s receptiveness to new ideas and 

initiative for change. We aggregated the clinician’s responses within each site 

and constructed an average response for each clinic. The intraclass correlation 

for each of these measures was high; however the overall reliability was low to 

moderate (Marsden et al., 2006).

3.2.3.3 Im plem entation success

We used the overall rating of the clinic as a measure of the implementation suc­

cess. The rater was asked to summarize each clinic’s monthly Senior Leadership 

Report and rate the clinic on a scale of 1 to 5 (l=nothing, or almost nothing sig­

nificant happening and 5=potential for ’’breakthrough” change). This is different
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from most of the quality improvement studies where implementation success is 

judged either by objective data on outcomes and processes or by self reporting 

of the employees of the concerned organization. Since such a rating procedure 

could be highly subjective, it was later verified by ratings from members of the 

EQHIV team to improve reliability.

3.2.3.4 Statistical analysis

We conducted an exploratory factor analysis on responses to nine questions per­

taining to the decision making environment in the organization. We performed 

the principal factor analysis and used varimax method of orthogonal rotation. 

Using the Kaiser criterion for minimum eigen value of 1.0 yielded two factors 

with eigen value of 5.5 and 1.1. The proportion of the variance explained by the 

two factors was around 67%. We constructed the factors using the factor score 

method. We labeled the first factor as organization’s QI focus and it included 

items such as: leadership’s clarity in stating its QI vision, leadership’s ability to 

implement new QI programs, staff initiative in developing new ideas, staff coop­

eration to improve HIV care, staff training in QI, and patient involvement in QI 

activities. We named the second factor as openness in the organization’s culture 

and it included items such as: responsiveness and support of leadership to new 

ideas, respondent’s willingness to participate in policy decisions and receptiveness 

of staff to new ideas. Cronbach’s alpha for the two factors was found to be 0.87 

and 0.70 indicating good reliability (Nunnally, 1967).

We used count regression to test Hypothesis 1 since the dependent variable is 

a count variable. Since the descriptive statistics in Table 2 clearly indicate that 

overdispersion for our dependent variable, number of unique interventions, we 

used a negative binomial model (Cameron and Trivedi, 1998). For Hypothesis 2
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and 3 we used regular OLS models.

3.3 R esults

3.3.1 D escriptive Statistics

Table 3.1 contains a brief description of various clinic characteristics chosen for 

this study as compared to the overall sample.

Table 3.1: Comparison of characteristics of study clinics with all Title III clinics

Variable All Title III sites Study sites

Region, %

Northeast 39.8 40.4

South 27.7 35.7

Midwest 15.0 16.7

West 17.5 7.1

Organization Type, %

Community Health Center 38.9 30.

Hospital 11.1 11.9

Other 50.0 57.14

HIV infected patients ±  SD, n 623 ±  733 682 ±  758

Large Clinic (>400 patients), % 51.0 50.0

HIV speciality clinic, % 74.3 64.3

Table 3.2 contains descriptive statistics for the continuous variables used in 

our analysis. Clinics implemented around 35 unique interventions and repeated 

around 9 interventions on average. Only 16.66% or one in every six interventions 

was evaluated and only 0.25 or one in every four interventions were repeated by
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the clinics on average. The variability on each of these dimensions was consider­

able as seen from the standard deviation and the range in Table 2.

3.3.2 N um ber o f interventions

Table 3.3 shows that openness in the organizational culture and QI focus in an 

organization was associated with higher number of interventions attempted in the 

clinic as hypothesized. However, we could not find evidence for significant asso­

ciation of the other independent variables: presence of multidisciplinary teams 

and regular measurement of quantifiable goals. Also, size of clinics as measured 

by the number of HIV patients was not associated with the number of interven­

tions. We also find that there is statistically significant difference in the number 

of interventions across different organization types and also across different re­

gions. This indicates presence of other underlying predictor variables that might 

be correlated with organization types and regions.

3.3.3 Cross-departm ental nature of interventions

The dependent variable for Hypothesis 3 is the standardized Herfindahl’s index 

over target areas of interventions. Since this is a continuous variable, we used 

regular OLS regression model. Recall that a lower Herfindahl’s index implies that 

the interventions are focused on a broader set of target areas in the context of 

chronic care model. Table 3.4 contains the coefficient values with the respective p- 

values. Thus, the negative sign of the coefficients implies that we find support for 

our hypothesis: open organizational culture, QI focus and presence of multidis­

ciplinary team is associated with interventions that are more cross-departmental 

in nature.
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3.3.4 Implementation success

Table 5 contains the coefficient values and associated p-values for testing Hy­

pothesis 3. As expected, number of interventions and mean importance rating of 

interventions were significantly associated with the overall implementation suc­

cess. Moreover, after controlling for these two aspects of intervention choices, 

we found that clinics that repeated and evaluated a higher fraction of the inter­

ventions and implemented more cross-departmental interventions were rated as 

more successful in their quality improvement efforts. We also estimated another 

model that included the organizational culture variables in addition to the above 

variables. We found that all the variables pertaining to the organizational cul­

ture turned out to be non-significant. The overall F-value and adjusted R2 values 

dropped suggesting that these variables do not explain additional variation. The 

introduction of these variables also reduced the statistical significance of a num­

ber of the original variables (Data not shown). This could potentially be due to 

the effect of the organizational culture being already captured in the intervention 

choice variables such as the number of unique interventions attempted and the 

cross-departmental nature of the interventions.

3.4 D iscussion and Limitations

In this chapter, we were able to identify the organizational characteristics that can 

have an impact on the success of a quality improvement collaborative in a chronic 

care setting. We also identified the mechanism through which these characteris­

tics impact the implementation outcome - the intervention and implementation 

choices during the collaborative. This provides an explanation of the fact that 

organizational performance in a quality improvement collaborative depends on
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various contextual factors that are specific to the organization’s culture.

However, there are several limitations to our study. First, the implementation 

success in our study was using the ratings given by the coders to the overall 

quality improvement efforts at the clinics. We have some assurance from the fact 

that inter-rater reliability was tested during codification in the earlier studies. 

Moreover, we recognize that this measure need not be an indicator of how the 

quality of care actually improved at the patient level in the participating clinics 

as a result of the collaborative.

Second, due to the structure of the existing survey instrument, we could 

extract only limited information regarding the organization’s culture. It would 

be interesting to also elicit the attitudes of the team members and their influence 

in the broader organization since these characteristics could also significantly 

impact the implementation outcome.

Third, previous study based on this survey data found low to modest relia­

bility of responses for many items. However, given the relatively high intraclass 

correlation, we feel reasonably confident about the validity of aggregation of sur­

vey responses within the clinics.

Finally, Structured Equations Modeling presents a more rigorous approach to 

estimate multiple relationships among variables of our interest. However, this 

approach usually requires more observations in order to obtain sufficient statis­

tical power. An alternative approach involving instrumental variables should be 

employed to check the robustness of our analysis.
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Table 3.2: Descriptive statistics

Variable Mean Std. Dev. Min. Max.

Number of HIV patients 681.85 758.20 59.00 3500.00

Organization’s QI focus 0.00 1.00 -2.02 1.56

Openness in organization’s culture 0.00 1.00 -2.17 2.03

Measurement of progress towards quantifiable goals 1.14 0.25 1.00 2.00

Number of unique interventions 34.71 18.66 1.00 77.00

Fraction of repeated interventions 0.25 0.13 0.00 0.54

Fraction of evaluated interventions 0.17 0.12 0.00 0.58

Mean rating of interventions 2.45 0.44 1.00 3.59

Overall clinic rating 2.55 0.51 1.36 3.24



www.manaraa.com

Table 3.3: Negative binomial regression explaining the number of unique inter­

ventions (N =  42, Log Likelihood =  3960, Dispersion =  0.18)

Variable Coefficient p-value

Intercept 4.15 < 0.01

Predictor Variables

QI focus 0.29 0.02

Openness in organizational culture 0.37 < 0.01

Measuring quantifiable goals 0.26 0.47

Multidisciplinary team 0.16 0.47

Control Variables

Large clinics (> 400 patients) -0.03 0.88

Specialty site -0.02 0.92

Organization Type:

Community based organization -0.51 0.03

Community health center -0.69 0.01

Public health clinic 0.04 0.91

Hospital -0.61 0.05

Region:

Northwest -0.68 0.07

South -0.67 0.06

Midwest -0.56 0.26
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Table 3.4: OLS Regression explaining the cross-departmental nature of interven­

tions (N =  42, R2 =  0.55, Adj. R2 =  0.34, p-value =  0.02)

Variable Coefficient p-value

Intercept 0.17 0.02

Predictor Variables

QI focus -0.03 0.09

Openness in organizational culture -0.04 < 0.01

Measuring quantifiable goals -0.07 0.12

Multidisciplinary team -0.09 <0.01

Control Variables

Large clinics (>  400 patients) -0.02 0.39

Specialty site 0.01 0.92

Organization Type:

Community based organization -0.00 0.93

Community health center 0.04 0.31

Public health clinic -0.04 0.36

Hospital 0.04 0.42

Region:

Northwest 0.07 0.14

South 0.04 0.37

Midwest 0.02 0.70

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

Table 3.5: OLS regression explaining the implementation success (overall clinic rating) at clinics (N =  42, R2 =  0.57, 

Adj. R2 = 0.49, p-value j 0.01)

Variable Coefficient p-value

Intercept 1.19 0.05

Predictor Variables

Percentage of interventions repeated 0.89 0.08

Percentages of interventions evaluated 1.13 0.06

Multidisciplinary team 0.26 0.08

Cross-departmental nature of interventions (Herfindahl’s index) -7.91 0.03

Number of unique interventions 0.01 0.03

Mean importance rating of interventions 0.29 0.08
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